141,420 research outputs found

    Heterocyst placement strategies to maximize growth of cyanobacterial filaments

    Full text link
    Under conditions of limited fixed-nitrogen, some filamentous cyanobacteria develop a regular pattern of heterocyst cells that fix nitrogen for the remaining vegetative cells. We examine three different heterocyst placement strategies by quantitatively modelling filament growth while varying both external fixed-nitrogen and leakage from the filament. We find that there is an optimum heterocyst frequency which maximizes the growth rate of the filament; the optimum frequency decreases as the external fixed-nitrogen concentration increases but increases as the leakage increases. In the presence of leakage, filaments implementing a local heterocyst placement strategy grow significantly faster than filaments implementing random heterocyst placement strategies. With no extracellular fixed-nitrogen, consistent with recent experimental studies of Anabaena sp. PCC 7120, the modelled heterocyst spacing distribution using our local heterocyst placement strategy is qualitatively similar to experimentally observed patterns. As external fixed-nitrogen is increased, the spacing distribution for our local placement strategy retains the same shape while the average spacing between heterocysts continuously increases.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Physical Biology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version will be available onlin

    Placement driven retiming with a coupled edge timing model

    Get PDF
    Retiming is a widely investigated technique for performance optimization. It performs powerful modifications on a circuit netlist. However, often it is not clear, whether the predicted performance improvement will still be valid after placement has been performed. This paper presents a new retiming algorithm using a highly accurate timing model taking into account the effect of retiming on capacitive loads of single wires as well as fanout systems. We propose the integration of retiming into a timing-driven standard cell placement environment based on simulated annealing. Retiming is used as an optimization technique throughout the whole placement process. The experimental results show the benefit of the proposed approach. In comparison with the conventional design flow based on standard FEAS our approach achieved an improvement in cycle time of up to 34% and 17% on the average
    • …
    corecore