1,203 research outputs found

    Feedback MPC for Torque-Controlled Legged Robots

    Full text link
    The computational power of mobile robots is currently insufficient to achieve torque level whole-body Model Predictive Control (MPC) at the update rates required for complex dynamic systems such as legged robots. This problem is commonly circumvented by using a fast tracking controller to compensate for model errors between updates. In this work, we show that the feedback policy from a Differential Dynamic Programming (DDP) based MPC algorithm is a viable alternative to bridge the gap between the low MPC update rate and the actuation command rate. We propose to augment the DDP approach with a relaxed barrier function to address inequality constraints arising from the friction cone. A frequency-dependent cost function is used to reduce the sensitivity to high-frequency model errors and actuator bandwidth limits. We demonstrate that our approach can find stable locomotion policies for the torque-controlled quadruped, ANYmal, both in simulation and on hardware.Comment: Paper accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    Online learning with stability guarantees: A memory-based real-time model predictive controller

    Full text link
    We propose and analyze a real-time model predictive control (MPC) scheme that utilizes stored data to improve its performance by learning the value function online with stability guarantees. For linear and nonlinear systems, a learning method is presented that makes use of basic analytic properties of the cost function and is proven to learn the MPC control law and the value function on the limit set of the closed-loop state trajectory. The main idea is to generate a smart warm start based on historical data that improves future data points and thus future warm starts. We show that these warm starts are asymptotically exact and converge to the solution of the MPC optimization problem. Thereby, the suboptimality of the applied control input resulting from the real-time requirements vanishes over time. Simulative examples show that existing real-time MPC schemes can be improved by storing data and the proposed learning scheme.Comment: This article is an extended version of the paper "Online learning with stability guarantees: A memory-based warm starting for real-time MPC" published in Automatica, Volume 122, 109247, 2020, including all proofs, an application example, and a detailed description of the used algorith
    • …
    corecore