3 research outputs found

    AES Side-Channel Countermeasure using Random Tower Field Constructions

    No full text
    International audienceMasking schemes to secure AES implementations against side-channel attacks is a topic of ongoing research. The most sensitive part of the AES is the non-linear SubBytes operation, in particular, the inversion in GF(2^8), the Galois field of 2^8 elements. In hardware implementations, it is well known that the use of the tower of extensions GF(2) ⊂ GF(2^2) ⊂ GF(2^4) ⊂ GF(2^8) leads to a more efficient inversion. We propose to use a random isomorphism instead of a fixed one. Then, we study the effect of this randomization in terms of security and efficiency. Considering the field extension GF(2^8)/GF(2^4), the inverse operation leads to computation of its norm in GF(2^4). Hence, in order to thwart side-channel attack, we manage to spread the values of norms over GF(2^4). Combined with a technique of boolean masking in tower fields, our countermeasure strengthens resistance against first-order differential side-channel attacks

    Side Channel Analysis of a Java-­based Contactless Smart Card

    Get PDF
    Smart cards are widely used in different areas of modern life including identification, banking, and transportation cards. Some types of cards are able to store data and process information as well. A number of them can run cryptographic algorithms to enhance the security of their transactions and it is usually believed that the information and values stored in them are completely safe. However, this is generally not the case due to the threat of the side channel. Side channel analysis is the process of obtaining additional information from the internal activity of a physical device beyond that allowed by its specifications. There exist different techniques to attempt to obtain information from a cryptosystem using other ways than the normally permitted. This thesis presents a series of experiments intended to study the side channel from a particular type of smart card, known as Java Cards. This investigation uses the well known technique, Correlation Analysis, and a new type of side channel attack called fast correlation in the frequency domain to study the side channel of Java Cards. This research presents a giant magnetoresistor (GMR) probe and for the first time, this type of sensor is used to investigate the side channel. A novel setup designed for studying the side channel of smart cards is described and two metrics used to evaluate the analysis results are presented. After testing the GMR probe and methodology on electronic devices executing the Advanced Encryption Standard (AES), such as 8 bit microcontrollers and 128 bit AES implementations on FPGAs, these techniques were applied to analyse two different models of Java Cards working in the contactless mode. The results show that successful attacks on a software implementation of AES running on both models of Java Cards are possible
    corecore