2,663 research outputs found

    A spectral estimation toolkit for Java applications

    Get PDF
    AbstractThis paper examines the capability, performance, and relevance of a high-performance advanced signal processing toolkit in Java, a programming language for Web-based applications. To demonstrate the simplicity, ease, and application use of the toolkit, a spectral estimation applet has been developed in the Java environment using advanced Internet technologies such as Remote Method Invocation (RMI). This application provides an interactive and visual approach in understanding theoretical concepts of advanced signal processing methods and shows the need to create more application applets to better understand additional concepts in signal and image processing. Furthermore, a toolkit with limited functionality and different framework has been developed for embedded and handheld devices such as cellular phones and palm pilots. This toolkit is also shown to be useful in developing applications MIDlets on those devices

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    Spectroscopic Analysis in the Virtual Observatory Environment with SPLAT-VO

    Full text link
    SPLAT-VO is a powerful graphical tool for displaying, comparing, modifying and analyzing astronomical spectra, as well as searching and retrieving spectra from services around the world using Virtual Observatory (VO) protocols and services. The development of SPLAT-VO started in 1999, as part of the Starlink StarJava initiative, sometime before that of the VO, so initial support for the VO was necessarily added once VO standards and services became available. Further developments were supported by the Joint Astronomy Centre, Hawaii until 2009. Since end of 2011 development of SPLAT-VO has been continued by the German Astrophysical Virtual Observatory, and the Astronomical Institute of the Academy of Sciences of the Czech Republic. From this time several new features have been added, including support for the latest VO protocols, along with new visualization and spectra storing capabilities. This paper presents the history of SPLAT-VO, it's capabilities, recent additions and future plans, as well as a discussion on the motivations and lessons learned up to now.Comment: 15 pages, 6 figures, accepted for publication in Astronomy & Computin

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table
    corecore