555 research outputs found

    Speaker Diarization with Lexical Information

    Full text link
    This work presents a novel approach for speaker diarization to leverage lexical information provided by automatic speech recognition. We propose a speaker diarization system that can incorporate word-level speaker turn probabilities with speaker embeddings into a speaker clustering process to improve the overall diarization accuracy. To integrate lexical and acoustic information in a comprehensive way during clustering, we introduce an adjacency matrix integration for spectral clustering. Since words and word boundary information for word-level speaker turn probability estimation are provided by a speech recognition system, our proposed method works without any human intervention for manual transcriptions. We show that the proposed method improves diarization performance on various evaluation datasets compared to the baseline diarization system using acoustic information only in speaker embeddings

    TSUP Speaker Diarization System for Conversational Short-phrase Speaker Diarization Challenge

    Full text link
    This paper describes the TSUP team's submission to the ISCSLP 2022 conversational short-phrase speaker diarization (CSSD) challenge which particularly focuses on short-phrase conversations with a new evaluation metric called conversational diarization error rate (CDER). In this challenge, we explore three kinds of typical speaker diarization systems, which are spectral clustering(SC) based diarization, target-speaker voice activity detection(TS-VAD) and end-to-end neural diarization(EEND) respectively. Our major findings are summarized as follows. First, the SC approach is more favored over the other two approaches under the new CDER metric. Second, tuning on hyperparameters is essential to CDER for all three types of speaker diarization systems. Specifically, CDER becomes smaller when the length of sub-segments setting longer. Finally, multi-system fusion through DOVER-LAP will worsen the CDER metric on the challenge data. Our submitted SC system eventually ranks the third place in the challenge

    Jitter and Shimmer measurements for speaker diarization

    Get PDF
    Jitter and shimmer voice quality features have been successfully used to characterize speaker voice traits and detect voice pathologies. Jitter and shimmer measure variations in the fundamental frequency and amplitude of speaker's voice, respectively. Due to their nature, they can be used to assess differences between speakers. In this paper, we investigate the usefulness of these voice quality features in the task of speaker diarization. The combination of voice quality features with the conventional spectral features, Mel-Frequency Cepstral Coefficients (MFCC), is addressed in the framework of Augmented Multiparty Interaction (AMI) corpus, a multi-party and spontaneous speech set of recordings. Both sets of features are independently modeled using mixture of Gaussians and fused together at the score likelihood level. The experiments carried out on the AMI corpus show that incorporating jitter and shimmer measurements to the baseline spectral features decreases the diarization error rate in most of the recordings.Peer ReviewedPostprint (published version

    Speaker Diarization Based on Intensity Channel Contribution

    Get PDF
    The time delay of arrival (TDOA) between multiple microphones has been used since 2006 as a source of information (localization) to complement the spectral features for speaker diarization. In this paper, we propose a new localization feature, the intensity channel contribution (ICC) based on the relative energy of the signal arriving at each channel compared to the sum of the energy of all the channels. We have demonstrated that by joining the ICC features and the TDOA features, the robustness of the localization features is improved and that the diarization error rate (DER) of the complete system (using localization and spectral features) has been reduced. By using this new localization feature, we have been able to achieve a 5.2% DER relative improvement in our development data, a 3.6% DER relative improvement in the RT07 evaluation data and a 7.9% DER relative improvement in the last year's RT09 evaluation data

    A Speaker Diarization System for Studying Peer-Led Team Learning Groups

    Full text link
    Peer-led team learning (PLTL) is a model for teaching STEM courses where small student groups meet periodically to collaboratively discuss coursework. Automatic analysis of PLTL sessions would help education researchers to get insight into how learning outcomes are impacted by individual participation, group behavior, team dynamics, etc.. Towards this, speech and language technology can help, and speaker diarization technology will lay the foundation for analysis. In this study, a new corpus is established called CRSS-PLTL, that contains speech data from 5 PLTL teams over a semester (10 sessions per team with 5-to-8 participants in each team). In CRSS-PLTL, every participant wears a LENA device (portable audio recorder) that provides multiple audio recordings of the event. Our proposed solution is unsupervised and contains a new online speaker change detection algorithm, termed G 3 algorithm in conjunction with Hausdorff-distance based clustering to provide improved detection accuracy. Additionally, we also exploit cross channel information to refine our diarization hypothesis. The proposed system provides good improvements in diarization error rate (DER) over the baseline LIUM system. We also present higher level analysis such as the number of conversational turns taken in a session, and speaking-time duration (participation) for each speaker.Comment: 5 Pages, 2 Figures, 2 Tables, Proceedings of INTERSPEECH 2016, San Francisco, US
    • …
    corecore