6,086 research outputs found

    Advanced Security Analysis for Emergent Software Platforms

    Get PDF
    Emergent software ecosystems, boomed by the advent of smartphones and the Internet of Things (IoT) platforms, are perpetually sophisticated, deployed into highly dynamic environments, and facilitating interactions across heterogeneous domains. Accordingly, assessing the security thereof is a pressing need, yet requires high levels of scalability and reliability to handle the dynamism involved in such volatile ecosystems. This dissertation seeks to enhance conventional security detection methods to cope with the emergent features of contemporary software ecosystems. In particular, it analyzes the security of Android and IoT ecosystems by developing rigorous vulnerability detection methods. A critical aspect of this work is the focus on detecting vulnerable and unsafe interactions between applications that share common components and devices. Contributions of this work include novel insights and methods for: (1) detecting vulnerable interactions between Android applications that leverage dynamic loading features for concealing the interactions; (2) identifying unsafe interactions between smart home applications by considering physical and cyber channels; (3) detecting malicious IoT applications that are developed to target numerous IoT devices; (4) detecting insecure patterns of emergent security APIs that are reused from open-source software. In all of the four research thrusts, we present thorough security analysis and extensive evaluations based on real-world applications. Our results demonstrate that the proposed detection mechanisms can efficiently and effectively detect vulnerabilities in contemporary software platforms. Advisers: Hamid Bagheri and Qiben Ya

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    Access Control for IoT: Problems and Solutions in the Smart Home

    Get PDF
    The Internet of Things (IoT) is receiving considerable amount of attention from both industry and academia due to the business models that it enables and the radical changes it introduced in the way people interact with technology. The widespread adaption of IoT in our everyday life generates new security and privacy challenges. In this thesis, we focus on "access control in IoT": one of the key security services that ensures the correct functioning of the entire IoT system. We highlight the key differences with access control in traditional systems (such as databases, operating systems, or web services) and describe a set of requirements that any access control system for IoT should fulfill. We demonstrate that the requirements are adaptable to a wide range of IoT use case scenarios by validating the requirements for access control elicited when analyzing the smart lock system as sample use case from smart home scenario. We also utilize the CAP theorem for reasoning about access control systems designed for the IoT. We introduce MQTT Security Assistant (MQTTSA), a tool that automatically detects misconfigurations in MQTT-based IoT deployments. To assist IoT system developers, MQTTSA produces a report outlining detected vulnerabilities, together with (high level) hints and code snippets to implement adequate mitigations. The effectiveness of the tool is assessed by a thorough experimental evaluation. Then, we propose a lazy approach to Access Control as a Service (ACaaS) that allows the specification and management of policies independently of the Cloud Service Providers (CSPs) while leveraging its enforcement mechanisms. We demonstrate the approach by investigating (also experimentally) alternative deployments in the IoT platform offered by Amazon Web Services on a realistic smart lock solution

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution
    • …
    corecore