485 research outputs found

    Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules

    Get PDF
    The rugged energy landscape of biomolecules together with shortcomings of traditional molecular dynamics (MD) simulations require specialized methods for capturing large-scale, long-time configurational changes along with chemical dynamics behavior. In this report, MD-based methods for biomolecules are surveyed, involving modification of the potential, simulation protocol, or algorithm as well as global reformulations. While many of these methods are successful at probing the thermally accessible configuration space at the expense of altered kinetics, more sophisticated approaches like transition path sampling or Markov chain models are required to obtain mechanistic information, reaction pathways, and/or reaction rates. Divide-and-conquer methods for sampling and for piecing together reaction rate information are especially suitable for readily available computer cluster networks. Successful applications to biomolecules remain a challenge

    The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    Get PDF
    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.Comment: 19 page

    Computational Investigations of Biomolecular Mechanisms in Genomic Replication, Repair and Transcription

    Get PDF
    High fidelity maintenance of the genome is imperative to ensuring stability and proliferation of cells. The genetic material (DNA) of a cell faces a constant barrage of metabolic and environmental assaults throughout the its lifetime, ultimately leading to DNA damage. Left unchecked, DNA damage can result in genomic instability, inviting a cascade of mutations that initiate cancer and other aging disorders. Thus, a large area of focus has been dedicated to understanding how DNA is damaged, repaired, expressed and replicated. At the heart of these processes lie complex macromolecular dynamics coupled with intricate protein-DNA interactions. Through advanced computational techniques it has become possible to probe these mechanisms at the atomic level, providing a physical basis to describe biomolecular phenomena. To this end, we have performed studies aimed at elucidating the dynamics and interactions intrinsic to the functionality of biomolecules critical to maintaining genomic integrity: modeling the DNA editing mechanism of DNA polymerase III, uncovering the DNA damage recognition/repair mechanism of thymine DNA glycosylase and linking genetic disease to the functional dynamics of the pre-initiation complex transcription machinery. Collectively, our results elucidate the dynamic interplay between proteins and DNA, further broadening our understanding of these complex processes involved with genomic maintenance

    Simulating rare events using a Weighted Ensemble-based string method

    Get PDF
    We introduce an extension to the Weighted Ensemble (WE) path sampling method to restrict sampling to a one dimensional path through a high dimensional phase space. Our method, which is based on the finite-temperature string method, permits efficient sampling of both equilibrium and non-equilibrium systems. Sampling obtained from the WE method guides the adaptive refinement of a Voronoi tessellation of order parameter space, whose generating points, upon convergence, coincide with the principle reaction pathway. We demonstrate the application of this method to several simple, two-dimensional models of driven Brownian motion and to the conformational change of the nitrogen regulatory protein C receiver domain using an elastic network model. The simplicity of the two-dimensional models allows us to directly compare the efficiency of the WE method to conventional brute force simulations and other path sampling algorithms, while the example of protein conformational change demonstrates how the method can be used to efficiently study transitions in the space of many collective variables

    Probing site-specific twin nucleation in hexagonal close packed (HCP) materials with nudged elastic band (NEB) method

    Get PDF
    Molecular Dynamics (MD) and Molecular Statics (MS) simulations have always proven to be powerful tools to study material behavior at the lowest length scale. However, one of the greatest challenges in material modelling is the effective upscaling of relevant material properties from atomic scale to continuum scale. One such challenge is how best to capture the role of twinning in higher scale plasticity. Capturing twin nucleation in fullield crystal plasticity is a long-standing problem in materials science. The challenge resides mainly in the biased regional lattice transformation associated with twin formation in defiance of its obedience to a threshold stress law which could be fulfilled in regions where twinning is deferred. Hence, determining a favorable site for nucleation of a twin variant remains a daunting task. This dissertation is an attempt to understand twin nucleation in hexagonal close packed (HCP) metals using a technique called Nudged Elastic Band (NEB) method. NEB calculations are performed between two stable configurations and use a number of intermediate images to describe the transition. Results of calculations demonstrate that the role of stress and atomic structure in twin nucleation could be understood in terms of the minimum energy path, energy barrier, and relaxed energy. This method allows to gauge the transformations that the lattice could experience when evolving from a given thermodynamic state to a final state of a predefined twin embryo under various boundary conditions. This allows direct comparisons between various cases with respect to twin nucleation and hence provides a measure of the material plasticity. Such results are crucial in higher scale modelling of the material
    corecore