3,402 research outputs found

    Query Rewriting and Optimization for Ontological Databases

    Full text link
    Ontological queries are evaluated against a knowledge base consisting of an extensional database and an ontology (i.e., a set of logical assertions and constraints which derive new intensional knowledge from the extensional database), rather than directly on the extensional database. The evaluation and optimization of such queries is an intriguing new problem for database research. In this paper, we discuss two important aspects of this problem: query rewriting and query optimization. Query rewriting consists of the compilation of an ontological query into an equivalent first-order query against the underlying extensional database. We present a novel query rewriting algorithm for rather general types of ontological constraints which is well-suited for practical implementations. In particular, we show how a conjunctive query against a knowledge base, expressed using linear and sticky existential rules, that is, members of the recently introduced Datalog+/- family of ontology languages, can be compiled into a union of conjunctive queries (UCQ) against the underlying database. Ontological query optimization, in this context, attempts to improve this rewriting process so to produce possibly small and cost-effective UCQ rewritings for an input query.Comment: arXiv admin note: text overlap with arXiv:1312.5914 by other author

    Coping with Incomplete Data: Recent Advances

    Get PDF
    International audienceHandling incomplete data in a correct manner is a notoriously hard problem in databases. Theoretical approaches rely on the computationally hard notion of certain answers, while practical solutions rely on ad hoc query evaluation techniques based on threevalued logic. Can we find a middle ground, and produce correct answers efficiently? The paper surveys results of the last few years motivated by this question. We reexamine the notion of certainty itself, and show that it is much more varied than previously thought. We identify cases when certain answers can be computed efficiently and, short of that, provide deterministic and probabilistic approximation schemes for them. We look at the role of three-valued logic as used in SQL query evaluation, and discuss the correctness of the choice, as well as the necessity of such a logic for producing query answers

    Coping with Incomplete Data: Recent Advances

    Get PDF
    Handling incomplete data in a correct manner is a notoriously hard problem in databases. Theoretical approaches rely on the computationally hard notion of certain answers, while practical solutions rely on ad hoc query evaluation techniques based on three-valued logic. Can we find a middle ground, and produce correct answers efficiently? The paper surveys results of the last few years motivated by this question. We re-examine the notion of certainty itself, and show that it is much more varied than previously thought. We identify cases when certain answers can be computed efficiently and, short of that, provide deterministic and probabilistic approximation schemes for them. We look at the role of three-valued logic as used in SQL query evaluation, and discuss the correctness of the choice, as well as the necessity of such a logic for producing query answers

    Perspectives in deductive databases

    Get PDF
    AbstractI discuss my experiences, some of the work that I have done, and related work that influenced me, concerning deductive databases, over the last 30 years. I divide this time period into three roughly equal parts: 1957–1968, 1969–1978, 1979–present. For the first I describe how my interest started in deductive databases in 1957, at a time when the field of databases did not even exist. I describe work in the beginning years, leading to the start of deductive databases about 1968 with the work of Cordell Green and Bertram Raphael. The second period saw a great deal of work in theorem providing as well as the introduction of logic programming. The existence and importance of deductive databases as a formal and viable discipline received its impetus at a workshop held in Toulouse, France, in 1977, which culminated in the book Logic and Data Bases. The relationship of deductive databases and logic programming was recognized at that time. During the third period we have seen formal theories of databases come about as an outgrowth of that work, and the recognition that artificial intelligence and deductive databases are closely related, at least through the so-called expert database systems. I expect that the relationships between techniques from formal logic, databases, logic programming, and artificial intelligence will continue to be explored and the field of deductive databases will become a more prominent area of computer science in coming years
    • 

    corecore