
J. LOGIC PROGRAMMING 1988:5:33-60 33

PERSPECTIVES IN DEDUCTIVE DATABASES*?’

JACK MINKER§

D I discuss my experiences, some of the work that I have done, and related
work that influenced me, concerning deductive databases, over the last 30
years. I divide this time period into three roughly equal parts: 1957-1968,
196991978, 1979-present. For the first I describe how my interest started in
deductive databases in 1957, at a time when the field of databases did not
even exist. I describe work in the beginning years, leading to the start of
deductive databases about 1968 with the work of Cordell Green and
Bertram Raphael. The second period saw a great deal of work in theorem
proving as well as the introduction of logic programming. The existence and
importance of deductive databases as a formal and viable discipline re-
ceived its impetus at a workshop held in Toulouse, France, in 1977, which
culminated in the book Logic and Data Bases. The relationship of deductive
databases and logic programming was recognized at that time. During the
third period we have seen formal theories of databases come about as an
outgrowth of that work, and the recognition that artificial intelligence and
deductive databases are closely related, at least through the so-called expert
database systems. I expect that the relationships between techniques from

Address correspondence to Professor Jack Minker, Department of Computer Science. Universitv of
Maryland. College Park, Maryland 20742.

Received April 1987; accepted Julv 1987.
*Invited paper.
i This paper is an expansion of an invited talk presented at the Principles of Database Systems

Conference, San Diego, California, 23-25 March 1987.
*This paper is dedicated to Kent Curtis, Division Director, Division of Computer and Computation

Research. of the National Science Foundation. Support from his activity was instrumental in my work on
deductive databases. The strength of computer science in the United States is due, in large measure, to
his foresight and leadership.

3Supported by Air Force Office of Scientific Research Grant AFOSR-82-0303, Army Research Office
(ARO) Grant DAAG-29-85-K-0177, and National Science Foundation grant IRI-8609170.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1988

52 Vanderbilt Ave., New York, NY 10017 0743.1066/88/$3.50

34 JACKMINKER

formal logic, databases, logic programming, and artificial intelligence will
continue to be explored and the field of deductive databases will become a
more prominent area of computer science in coming years. a

1. INTRODUCTION

This paper is an expansion of an invited talk presented at the Principles of Database
Systems (PODS) Conference in March 1987. It is, perhaps, fortuitous that I was
invited to lecture, since the year 1987 is the 30th anniversary of my exposure to the
field of deductive databases. Of course, in 1957, when I first started to work in this
area, neither the field of databases nor the field of deductive databases existed. I will
discuss my experiences, some of the work that I have done, and the work that has
most influenced me during this time period. Since this is a personal memoir, I do
not plan to provide a comprehensive perspective of the field. I hope that those
whose work I leave out will not take offense.

2. BEGINNING EXPERIENCES IN DEDUCTION: 1957-1%8

In 1957 I was working at the RCA Corporation. At that time RCA was awarded a
contract to investigate the possibility of automating work in Army intelligence
operations. I was among a group of people who spent time with U.S. Army
intelligence experts to learn how they stored their material and performed their
work. You must realize that in 1957 the field of computing was still in its early years
and only primitive tools were available. I had been exposed to computers a few
years earlier, about 1953, and there were no such things as database systems or even
genera1 programs to handle files. In 1957 IBM did not even offer peripheral discs or
drums on their machines.

I headed a group on this project, termed ACSI-MATIC, to devise a database storage
and retrieval system for the Army. Many interesting developments came out of the
effort, although it was never adopted by the Army. My coworker and friend Herb
Gurk and I were working on a system for Army intelligence personnel to store,
retrieve, maintain, and perform inferences on their data. Based on our design, a
prototype system was developed [61] which was able to accomplish the following
tasks:

(1)

(2)

(3)

(4)

(5)

process new data automatically into the files,

find chains of related data and test for their consistency,

classify new situations which are recognized as a result of new data,

merge many separate pieces of data into a formal file record or a finished
printed report,

accept a variety of interrogations and file maintenance orders easily from the
systems analysts and perform required retrieval and processing to produce
the desired outputs in useful formats.

The ability to find chains of related data and test for their consistency did indeed
perform deduction on data which had reliability estimates associated with them. As
far as I know, this may be the earliest and first use of computers to do deduction

PEKSPH‘TIVES IX DEDUCTIVE DATABASES 35

and derive revised estimates based on the original reliability values associated with
the data. Of course, the deduction that we did was not very sophisticated. However,
it was able to perform modus ponens and to check for what we called “cycles”, i.e.,
chains of inferences that were of the form

Because of the questionable reliability of the information, the analysts were not
willing to accept reasoning based on chains of deductions, but wanted reconfirmation
that the chain was closed. that is, a cycle was formed. In a paper with some of my
other coworkers at the time we discussed how this was accomplished [119]. Even
with such confirmatory information the analysts were not always willing to accept
such information as being true. One may characterize the system developed as
generative, since deductions were performed at the time of data input.

I left RCA in 1963 and joined a consulting firm, the Auerbach Corporation.
Although I did not do work on deduction for several years afterwards, I was
intrigued by some efforts being done in the field and read articles that described the
work. In particular, there were several places doing work in some aspect of
deduction. These were the Rand Corporation, MIT, Computer Corporation of
America, Stanford Research Institute, Stanford University, Systems Development
Corporation, and the Hughes Aircraft Corporation. In 1965, Robert Simmons [181]
wrote an excellent survey article that described work in the development of
first-generation question-answering systems. Although his major focus was on
natural-language comprehension, he did cover some approaches to inference making.
Simmons traces work in question-answering (QA) Systems back to 1959. He wrote
an update to his 1965 paper [183] that summarized work during the next five years
and covered second-generation QA systems. I believe that his articles were extremely
important and had a major impact in the field of QA systems.

Although I left the Auerbach Corporation in 1967 to go to the University of
Maryland, I remained as a consultant to them. Jerry Sable and I received a contract
from the Rome Air Development Center through the Auerbach Corporation, to
perform a study on “relational data systems,” as they relate to military applications.
The contract was awarded in 1969, and our study was completed in 1970 [122]. In
that study we reviewed work being performed on relational systems, with particular
emphasis on those that performed some deduction. The study was in line with my
research interests at the University of Maryland, as I wanted to go back to doing
work on deduction for database systems. I would like to give you an idea of the type
of efforts that were taking place at that time. Jerry and I visited the major
organizations where work was being performed on relational systems and met with
the key individuals who were doing the research. It was only when our final report
was nearing completion that we learned of the extremely important paper by Codd
[29] in which he discussed the foundations of a theory of relational databases.
Codd’s work has had a profound influence on databases.

Although Codd was the first to propose a formal theory for databases, based on
relations, others had used the concept of a relational database without having
specified a formal theory. One such group was at the Rand Corporation, where work
was started in 1963 using a relational approach to store data.

I was particularly impressed with the work at the Rand Corporation. Roger
Levien and Bill Maron [96-98, 1131 developed a system, termed relational data jile

36 JACKMINKER

(RDF), that had an inferential capability, implemented through a language termed
INFEREX. An INFEREX program could be stored in the system (as in current systems
that store views) and reexecuted if necessary. There were no formal theorem-proving
techniques. Rather, the programmer had to specify the reasoning rules via an
INFEREX program. The system was also able to handle credibility ratings of sen-
tences in forming deductions. They actually had a working system running (see also
[97, 99, 1131). The research was both at the level of implementation and at the
theoretical level.

The work by Lary Kuhns [91-931 on RDF was, I thought, particularly important.
I believe that Kuhns may have been the first to recognize that there were classes of
questions that were, in a sense, not reasonable. For example, consider a database
with authors and books listed. The statement “Reichenbach wrote Elements of
Symbolic Logic.” might be in the database. Whereas the question “What books has
Reichenbach written?” is reasonable, most individuals would agree that the question
“What books has Riechenbach not written?” or the question “Who did not write
Elements of Symbolic Logic?” are not reasonable questions. I believe that this is the
first time that the issue of negation in queries was explored. Kuhns related the
imprecise notion of “a reasonable question” with a precisely defined notion of a
dejinite formula.

The notion of definiteness is derived approximately as follows:

Dejinition. Given a set of sentences S, a dictionary Ds containing known terms, a
particular query Q, and an arbitrary name n, Q is said to be semidejinite if and
only if for any name n the answer to query Q is independent of whether or not
DLr contains n. Q is said to be definite if and only if Q is semidefinite on every
sentence set S.

Robert DiPaola [39, 401, who also was associated with the RDF project, proved
that there is no algorithm for determining whether or not a query is definite. His
paper may have been the first to use the theory of computing to obtain results on
databases. As will be described later, there is continued interest in this subject,
explored first by the group at the Rand Corporation.

Kuhns [93] also dealt with the general problem of quantification in query
systems; see, for example, [150]. Somewhat related to the work by Kuhns were a
number of papers in the late 1950s and early 1960s devoted to a general theory or
formalization of questions. See the papers by Aqvist [4], Belnap [ll], Carnap [16],
Harrah [63], Jespersen [75], and Kasher [78].

Another interesting effort dealing with relations and deduction was made in 1966
by Tom Marill [33-35, 1121, who developed a system termed the relational structure
system (RSS). The system consisted of 12 rules that permitted such capabilities as
chaining. He used a deduction procedure in what he termed, a “breadth-first-
followed-by-depth” manner. Other work during that time was performed by Hugh
Love and his colleagues [llO, 174, 1751 on a system termed the associative store
processor (ASP).

One cannot leave this beginning period without taking note of work at MIT and
Stanford that culminated in a system at the Stanford Research Institute. At MIT,
Bertram Raphael [155-1571 developed a system termed semantic information retriev-

al (SIR) as part of his doctoral dissertation. SIR had a limited capability with

PERSPECTIVES IN DEDUCTIVE DATABASES 37

respect to deduction, using special rules. Raphael subsequently designed and

implemented several successors to SIR when he moved to the Stanford Research
Institute after completing his degree. One system, QA-1, again had a primitive
deduction capability and used list structures to indicate how various kinds of facts
might interact. Cordell Green, a doctoral student at Stanford University, also
worked at the Stanford Research Institute. Green implemented QA-1 based on the
design given in Raphael’s dissertation. Green and Raphael [57] were the first to
recognize the importance of work being done in automated theorem proving as it
related to the problem of deduction in the context of databases. J. Alan Robinson,
in 1963 [170], developed the Robinson resolution principle, a uniform method for
performing automated deduction. Robinson’s contribution to theorem proving

techniques was significant and led to a great deal of work embodying his concepts.
The Robinson resolution principle is a primary method in today’s work in automat-
ed deduction. Green and Raphael developed a system, QA-2, that had as its base a
formal theorem-proving mechanism based on Robinson’s work. QA-2 was extended
to the system QA-3, which was effectively QA-2 with some added heuristics. Robert
Yates participated in the implementation of QA-2 and QA-3. Green and Raphael
then extended the system to QA-3.5 [57], which permitted alternative design
strategies to be tested within the context of the resolution theorem prover, and to
provide a more flexible input language than that of the first-order predicate calculus.
I believe that Green and Raphael should be given the credit for starting work in the
field of deductive databases. It was their work on the QA systems that showed the
viability of implementing deductive databases in a uniform manner.

In the conclusions to our study [121,122], Sable and I recognized the importance
of that work and stated:

The use in QA-3.5 of a single rule of inference based on developments in formal logic is a
significant development and important for plausible inferences that must be specified
dynamically.

We further recommended with respect to the area of formal theorem-proving
techniques oriented towards information retrieval that

It is important to support this area since it appears to be extremely promising with regard to
providing a general search capability. Considerably more research is required before the tool
can be applied in a practical environment.

For details concerning several systems during this time period, see the above
survey. Other papers that touched upon the work in deduction during this period

are by Kochen [85], Minker and Sable [120], Simmons [182], Salton [173], Ash and
Sibley [5], and Montgomery [137].

3. DEDUCTIVE DATABASES: THE FORMATIVE YEARS 1%9-1978

The thesis by Cordell Green [58], related work by Green [59, 601, and the work by
Green and Raphael [57] were influential in renewing my interest in deductive
databases. I was very pleased when Cordell Green was recognized for his work by
the ACM in 1985 and given the Grace Murray Hopper Award for his work
accomplished before the age of 30. I was proud to have had an opportunity to
recommend him for the award, as his work had been so influential to my research.

38 JACK MINKER

I thought that it would be essential to become engaged in automated theorem
proving, since it was fundamental to work in deductive databases. Fortunately for
me, my wife, Rita, was working as a computer professional at the National
Institutes of Health in the Division of Computer Research and Technology. Chin
Chang and Richard Lee were working in a different group within the same Division.
In the spring of 1970 Richard and Chin were writing their book on theorem proving
[24] and decided to offer a course at NIH using the book. Rita took the course.
After each lecture she would come home with the latest handouts that they
produced, and I would go over them diligently and send back corrections and
suggestions. They also asked the students to do homework problems. I am pleased
to say that Rita was the only one who answered all questions correctly. I am not at
liberty to comment on whether she had any assistance.

I was very impressed with the book that they were writing, and I was surprised to
learn that it had been turned down by a publisher. I told Richard and Chin that I
would speak to my friend and colleague Werner Rheinboldt, who was and still is in
charge of accepting computer books for Academic Press. I did, and, of course,
Werner was also impressed with the material, and the book was accepted for
publication. The book has been a tremendous success both technically and in the
number of copies sold.

While I was reading the book by Chang and Lee, I undertook the development of
an experimental theorem-proving system, the Maryland refutation proof procedure
systems (MRPPS), with my students [123]. The MRPPS 2.0 system had a large
number of inference systems and search strategies incorporated in it. Gerry Wilson
and I [199] reported on a large number of experiments that we performed on this
system to evaluate alternative inference systems and search strategies in automated
theorem proving. Active experimental research on automated theorem proving was
also being conducted by Wos and his group at Argonne National Laboratory
[2022204] and by Bledsoe [13] at the University of Texas. Wilson and I drew many
of our problems from those used by Wos’s group [203] in their experiments. As part
of his doctoral dissertation, Dan Fishman [44] investigated the problem of using sets
to represent predicates and their arguments. We thought that this would be most
useful for databases. As a result, we reported on “PI resolution” [45], an inference
system that operated on sets. Indeed, a deductive database system, termed MRPPS
3.0 [126]. designed and implemented with Gerry Wilson, James McSkimin, and Alan
Aronson, was developed. The work in this area started in approximately 1970.

I was not aware of much other work being done in deductive databases during
the period 1968 to 1974. However, in 1974 I attended the International Federation
of Information Processing Societies (IFIPS) meeting in Stockholm, Sweden. Two
papers impressed me at that time. One was presented by Jean-Marie Nicolas [144],
and the other by Robert Kowalski [88]. The paper by Nicolas was on a deductive
system, and the one by Kowalski was his seminal article in which he first proposed
logic as a programming language. I was pleased to meet Kowalski at the conference,
as I was impressed with the work he had been doing on his thesis and work that he
had done with Pat Hayes [84] on semantic trees in automated theorem proving. His
work on SL resolution [86] and on search strategies [85, 871 were, I thought,
significant. Indeed, his work on search strategies generalized the A* algorithm of
Hart, Nilsson, and Raphael [64], and deserves greater recognition. In that paper he
showed how search strategies generalize to theorem-proving contexts and introduced

PERSPECTIVES IN DEDUCTIVE DATABASES 39

the upwards diagonal search strategy. Gordon VanderBrug and I [193] described
relationships among state-space, problem-reduction, and theorem-proving represen-
tations of a problem. With respect to his IFIPS paper, 1 must say that I was
skeptical of logic as a programming language because of my work in automated
theorem proving. The experiments that Wilson and I had conducted were not
encouraging with respect to the time a theorem prover took to complete its search. I
mentioned this to Kowalski, and he assured me that there would be no problem,
since the complexity of theorem proving was not needed for normal programming
problems. I was skeptical about his response at the time. It was not until a few
months later, after reading his paper carefully, that I realized that Kowalski had
based his remarks on the use of Horn clauses for logic programming. A Horn clause
contains at most one positive atom, and when using SL resolution it does not
require ancestry resolution. Consequently, a much simpler inference system results.
Hill [68] termed this subset of SL resolution that operates on Horn clauses LUSH

resolution. LUSH resolution permits an arbitrary literal in a clause to be selected for
expansion, and uses neither factoring nor ancestry resolution. When restricted to
Horn-clause programs, LUSH is complete and sound. LUSH resolution is the basis of
all PROLOG interpreters. LUSH resolution is now referred to as SLD resolution,
linear resolution with selection function for definite clauses [2]. A clause is said to be
definite if it contains exactly one positive atom. One reason for the complexity
associated with SL resolution theorem proving is the need to do ancestry resolution.

I also wrote to Alain Colmerauer to ask for a copy of PROLOG, which, I had
learned, was a programming language based on logic. Alas, I did not receive a
response from him. Colmerauer [30] was the first to implement a logic programming
language. Both Kowalski and Colmerauer deserve credit for founding the field of
logic programming. Cordell Green in his thesis and papers that emanated therefrom
shows that he too had the basic idea of logic programming and also deserves credit
for recognizing that one could use logic as a programming language. Another
individual who deserves mention here is Carl Hewitt [67], who developed PLANNER,

which in effect is a logic programming language. Kowalski, however, was the
visionary who kept doggedly speaking about logic programming until the field
became recognized as important.’

In addition to work in theorem proving, I was working in deductive databases. In
particular, the MRPPS 3.0 [118, 1261 system was oriented towards deductive
databases, although it had many features useful for general theorem proving. Jim
McSkimin, one of my students, and I introduced some concepts into the MRPPS 3.0
system [118]. One was the idea of incorporating a semantic net as part of the
unification process, which we called semantic unification. A semantic network, as
used in artificial intelligence, was essentially statements of the form H(x) c M(x).
Hence, a semantic net can be represented easily in logic. Jim [117] also realized that
one can compile the axioms of the above type once, in advance, and incorporate
them into the unification algorithm. Thus, one could do type checking on arguments
dynamically during unification. (See [l] and [151] for more recent work on this

’ The idea of using logic as a programming language was proposed in 1966 by Louis Hodes [69]. He
implemented part of his work and noted that restricted portions of the predicate calculus would be
candidates for programming languages. An abstract of the unpublished paper appears in the August 1966
C’O~Z~~~U~I/(.U~IO~~S of the ACM. Hodes has made the paper available to me.

40 JACK MINKER

subject.) As to representing semantic nets, Deliyanni and Kowalski [38] generalized

the concept used in artificial intelligence and showed how to represent such
networks elegantly in logic. A second useful idea that we introduced was that of
using integrity constraints to cut off search in database problems. One should know,
without an extensive search, that it is impossible, for example, to find a person who
is both the mother and the father of any individual. King [82] in his thesis explored
this topic more fully than we had done, for the subject of relational databases.
Hammer and Zdonik [62] also used this idea. It was not until the 1980s that I
thought about extending and formalizing these ideas. I shall discuss this later in the
paper.

In 1976 I had a sabbatical leave and decided to spend some time visiting
researchers in Europe. I was particularly interested in visiting Jean-Marie Nicolas in
Toulouse. Although I had heard his talk at IFIPS, I had not met him. It seemed to
me that he was one of the few people doing work in deductive databases. I was also
interested in visiting Bob Kowalski at the Imperial College of London. Both Nicolas
and Kowalski were kind enough to invite me to come. Both visits were rewarding
for me. I met the very fine group at Toulouse. Her& Gallaire, whom I had not
known previously, was head of the Computer Science Department, and Nicolas was

a member, as were Robert Demolombe, Claudine Lassere, K. Yazdanian, and Guy
Zanon. I gave several lectures on my research, heard about their work, and had a
very fine exchange. Nicolas discussed the work that he was doing with Yazdanian on
integrity-constraint checking, and Demolombe discussed some of his work. Guy
Zanon, whom I met there, then came to Maryland in 1977 as a student and to work
with me. Gallaire and Nicolas asked me what I thought about the idea that they
should hold a Workshop in Toulouse on deductive databases. I told them that it
was, indeed, a very fine idea and that I would be pleased to participate. I suggested
that if there were a workshop, then assuming that the papers were good, a book
should be published that included the best papers.

At the Imperial College of London I met with Bob Kowalski and his budding
group, and learned about the research in which they were engaged. David H. D.
Warren was also visiting Kowalski’s group, and I was pleased to meet him. The
success of PROLOG as a useful language is due to Warren’s [196, 1971 development
of an efficient interpreter and making it available to others. I also spoke with Keith
Clark, who had just joined the faculty at Imperial College. Keith told me about his
work on negation and how one could characterize it as the unstated “only if” part
of “if and only if” statements. The added “only if” statements effectively complete
the database. If we are dealing with a Horn clause program P, then from P one can
deduce only positive facts. An interpreter that uses SLD resolution (complete and
sound for Horn clauses) can attempt to prove a ground atom and show if it is a
logical consequence of the program P. However, it cannot be proved if a query yQ
is a logical consequence of P, since the union of P with the negation of TQ, that is,
Q, is easily shown to be satisfiable. The rule, negation as jinite failure is used to
avoid this problem. The rule states that if Q is ground and in the finite failure set of
P, then yQ holds. That is, if the attempt to prove Q from P fails at a finite distance
along every possible path, then yQ can be assumed to be true. The significance of
Clark’s [27] result is that he proved that if one augments the program P, together
with the “only if” half of each of the clauses, called the completion of P [comp(P)],

PERSPECTIVES IN DEDUCTIVE DATABASES 41

plus some axioms for equality, then if Q is in the finite failure set of P, then ye is a
logical consequence of camp(P). This provides a soundness for the negation-

as-finite-failure rule.
Gallaire and Nicolas decided to hold their Workshop on Logic and Databases in

Toulouse in November 1977. Nicolas was the primary organizer and selected the
individuals who would be invited. I felt strongly that if the Workshop were a
success, it would be important to have a book in which the major articles would
appear. In that way we would focus attention on what Gallaire, Nicolas, and I all
agreed was an extremely important field.

The workshop was successful beyond my imagination. There were many signifi-
cant talks and contributions. The paper by Nicolas and Gallaire [146] focused on
the difference between model theory and proof theory. They demonstrated that the
approach that had been taken by the database community was model theoretic, that
is, the database represents the truths of the theory. However, in the deductive
database approach, the main thrust was proof theoretic. Ray Reiter, whose technical
report at Bolt, Beranek and Newman [159] had come out only a few months earlier,
presented two talks at the workshop. I thought that both of these papers were
significant. His well-known paper on the closed-world assumption (CWA) [161] was
one of the two papers. The second paper was on compiling axioms [160]. Reiter
noted that if there are no recursive axioms, then one could use a theorem prover to
generate a new set of axioms where the head of the axiom was defined in terms of
relations in a database. Hence, one could interface with a relational database and
not have to use a theorem prover during query operations. I suggested to Reiter that
his technical report should be published as a monograph, as I thought it was highly
significant. Reiter’s paper on the CWA shed light on three major issues: the
definition of a query, the definition of an answer to a query, and how one deals with
negation. Keith Clark presented his well-known paper on negation and introduced
the important concept of “if and only if” conditions that underly the meaning of
negation (see the discussion above of Clark’s work on negation). Papers by Chin
Chang [25], Charles Kellogg et al. [SO], and me [126] reported on actual systems that
had been developed that performed deductive search. In my paper I described the
indexing scheme that we used to access clauses in the MRPPS 3.0 system, as well as
its other features. Other important papers that appeared in the workshop and
ultimately in the book L.ogic and Data Buses [48] were by Kowalski [89], who
discussed the use of logic for data description; Futo, Darvas, and Szeredi [46] on
applications of PROLOG to drug data and drug interactions that they were working
on in Hungary; Nicolas and Yazdanian’s [145] paper on integrity constraints; and
the paper by Pirotte [150], who presented a framework for comparing high-level
nonprocedural query languages for the relational model of data. There were two
other papers that I thought were highly significant. These were by Alain Colmerauer
[31] on natural-language processing and by Roussel on PROLOG, both of the
Marseilles group. Colmerauer believed that it would be more important for him to
publish his paper in a journal, which he subsequently did [32]. Roussel had not
prepared a paper for the Proceedings and could not write his paper in time to meet
the publication date; hence it did not appear in the book. Few people outside the
group that met at Toulouse knew about PROLOG, and Gallaire and I had hoped
that a paper would appear in the book, as we thought that a larger community

42 JACK MINKER

should be aware of the work. It was left to others like David H. D. Warren,
Kowalski, and subsequently the Japanese to focus attention on PROLOG. See [9,
30. 1711 for early work on PROLOG by Colmerauer’s group at Marseilles.

In the Foreword to the book, Gallaire and I stated,

The book provides, for the first time, a comprehensive description of the interaction between
logic and data bases. It will be seen that logic can be used as a programming language, as a
query language, to perform deductive searches, to maintain the integrity of data bases, to
provide a formalism for handling negative information, to generalize concepts in knowledge
representation, and to represent and manipulate data structures. Thus, logic provides a
powerful tool for data bases that is accomplished by no other approach developed to date. It
provides a unifying mathematical theory for data bases.

Work that has been accomplished since then bears out these comments. The book
helped focus attention on the use of logic for deductive databases, as had not been
done earlier.

The formative years ended with the recognition of the significance of deductive
databases and logic programming. The Japanese announced their “Fifth Generation
Project”, [138], whose work was based on the concepts of logic programming. The
emphasis of the effort was to develop architectures that would take advantage of
logic programming for both sequential and parallel architectures. Their expectation
was that artificial-intelligence problems would be made easier to implement on
architectures based on logic programming. The director of the Japanese effort, Dr.
Kazuhiro Fuchi, had been exposed to PROLOG and was convinced of its signifi-
cance. There is no doubt in my mind that the Japanese were instrumental in making
computer professionals pay greater attention to logic programming and deductive
databases. The current explosion of research in these two topics since the Japanese
announcement is evidence of this trend.

In the United States, the artificial-intelligence community generally ignored
PROLOG and logic programming. The ideas on PROLOG had been developed in
Europe, and the Americans apparently believed that logic programming was of
interest only to those involved in automated theorem proving. Formal techniques
such as theorem proving were of no interest to this community, since procedure
invocation was in vogue, and after all, theorem proving was very time consuming.
Almost all researchers in the database community ignored deductive databases and
logic programming, apparently believing that it had no relevance to “real database
work” of either a theoretical or a practical nature. Those who were pushing the field
of deductive databases were from artificial intelligence, a subject thought to be
“flaky” by many in the database community. I am therefore thankful to the
Japanese who saw the light and helped publicize the field.

4. THEORETICAL FOUNDATIONS: 1979-PRESENT

The period from 1979 to the present can be characterized as the era when theoretical
foundations of both deductive databases and logic programming were developed.
One cannot divorce deductive databases from logic programming, as they are
intimately related.

A number of important developments happened simultaneously at a number of
different places. The first step in this development was the classic paper by van
Emden and Kowalski [191], in which they outlined fixed-point and operational
semantics of Horn-clause logic as a programming language. They demonstrated that

PERSPECTIVES IN DEDUCTIVE DATABASES 43

fixed-point semantics corresponds to model theory, while operational semantics
corresponds to proof theory. Van Emden and Kowalski gave the formal semantics
of a definite-clause logic formula, viewed as a program. Their use of the least-model
and least fixed-point constructions, as well as the procedural interpretation, have
become standard tools in logic-programming theory. They were the first to provide a
clearly defined formal declarative semantics, which was shown to be compatible
with a fixed-point semantics and a procedural interpretation of a logic formula,
viewed as a program. Their ideas also led to the concept of negation. If one takes
the Herbrand base and subtracts out the minimal model, then one can say that the
atoms that remain are those that can be assumed to be false. This provides a
model-theoretic view of negation. Thus, the paper, written from the viewpoint of
logic programming, had immediate consequences for databases.

Apt and van Emden [2], in an elegant paper, built upon the work of van Emden
and Kowalski [191]. To appreciate their contribution it is necessary to provide the
following background. If P is a Horn-clause logic program, the Herbrand base of P
is denoted by B(P). One can identify Herbrand interpretations for P and subsets of
B(P). The corresponding subset of the Herbrand base is the set of all ground atoms
which are true in the interpretation. The set of all Herbrand interpretations of P is a
complete lattice under the partial order of set inclusion. The mapping Tp, defined in
[191], from the lattice of Herbrand interpretations to itself is given as:

T,(Z)={AEB(P):AcB1,Bz,...,B,isa

ground instance of a clause in P and B,, B,, . . . , B,, E Z }

where I is a Herbrand interpretation. The operator Tp is monotonic, and Tp 1 o is
defined as nzI;1Ti(B(P)).

With the above as background, one of the results of Apt and van Emden is that
A is in the SLD finite failure set if and only if A @ T, J w. Lassez and Maher [94]
show that the finite failure set is characterized by FF = B(P) \ T, 1 o, and thus the
result of Apt and van Emden is essentially a weak soundness and completeness
result for finite failure. It only guarantees the existence of one finitely failed SLD,
tree and others may be infinite. Using the concept of fairness, they identified those
computation rules which guarantee finitely failed SLD trees, leading to a strong
soundness and completeness result on finite failure.

Jaffar. Lassez, and Lloyd [73] then showed that the inference system, SLDNF
(selective linear resolution for definite clauses with negation as failure) was complete
for ground negated atoms in the case of positive programs. Clark [27] had shown the
soundness of the negation-as-finite-failure rule for Horn logic programs P, augment-
ed by comp(P) and equality axioms. Jaffar. Lassez, and Lloyd’s contribution was to
show that if TQ is a logical consequence of comp(P), then Q is in the finite failure
set of the program P, which is the completeness result. Hence, a firm theoretical
foundation was given to negation for logic programming and deductive databases.
See Shepherdson [179, 1801 for a comprehensive discussion on negation in deductive
databases and logic programming. If one has a negated atom to be solved, then
assuming that the atom is ground, if one fails to find a proof for the positive atom,
the negated atom can be assumed true. SLDNF therefore provided a proof-theoretic
view of finding answers in the presence of negation.

These developments, together with work on fixed-point theory, SLD resolution,
and SLDNF resolution, provided the framework for John Lloyd’s outstanding

44 JACK MINKER

recent book, Foundations of Logic Programming. Logic programming now has a firm
theoretical foundation, and one can view PROLOG in the light of this theory. The
foresight of Colmerauer and his students in developing tools such as the “not”
operator and other extralogical features was clearly justified. The depth-first choice
and no-occurs check feature also led to efficient, but not complete, implementations.

Ray Reiter [165], during the same period, provided some fundamental insights
into database theory. He was the first to propose formal theories of deductive
databases that encompassed and generalized the work of Codd. Reiter reinterpreted
the conventional model-theoretic perspective on databases in purely proof-theoretic
terms. He demonstrated how relational databases can be seen as special theories of
first-order logic, where the theories incorporated the following assumptions:

(1) The domain-closure assumption. The individuals occurring in the database
are all and only the existing individuals.

(2) The unique-name assumption. Individuals with distinct names are distinct.

(3) The closed-world assumption. The only possible instances of a relation are
those implied by the database.

The use of a proof-theoretic approach permitted Reiter to provide a correct
treatment of query evaluation for databases that have incomplete information and a
class of null values; integrity constraints and their enforcement; and the extension
of the relational model to incorporate more real-world semantics such as the
representation of events and hierarchies. The significance of Reiter’s work is that he
focused on the proof-theoretic approach rather than the model-theoretic approach,
he gave precise definitions of a number of central issues, and he clarified and
extended relational databases to include deductive databases.

In another paper Reiter [167] treated the problem of indexed null values when it
is known that there is a value and that it may not be among the given constants in
the domain. In this case he showed that one could compute answers in a reasonable
way; however, in certain cases one obtains correct answers, but not necessarily all
the answers. Hence, he has a sound, but not necessarily complete, theory.

In my own work during this period, several problems were of interest to me. The
first was that of a theory for non-Horn clauses corresponding to the one that Reiter
had developed for Horn clauses, the second was to give consideration to some
aspect of recursive axioms in the theory, the third was to interface a logic language
with a database system, the fourth was to take advantage of integrity constraints
during the search process, and the fifth was to do work in nonmonotonic reasoning
as it relates to databases. I will touch upon some of this work.

With respect to non-Horn clauses, as part of the MRPPS 3.0 system we
developed a parenthesized notation [201] to keep track of the proof tree as we were
developing the proof. This was necessary because while performing deduction we
arbitrarily selected literals for expansion, and we wanted to retain the proof tree
along all paths. An arbitrary literal selection was important both for databases and
for problem-solving search. It was obvious that a PROLOG depth-first left-to-right
strategy would not be a good strategy for the class of problems in which we were
interested. For non-Horn sets of axioms, there is a problem with the selection of
arbitrary literals. Reiter [158] had shown that it would inhibit a complete search.
Kowalski and Kuehner’s SL resolution allows a limited selection strategy. Once one

PERSPECTIVES IN DEDUCTIVE DATABASES 45

selects a literal for expansion, one must solve that literal before other literals in the
same clause can be selected. Guy Zanon suggested that the parenthesized notation
that had been developed could be the basis for an inference system that was similar
to SL resolution, but it would allow an arbitrary selection strategy and be complete
and sound. We were able to devise a new complete and sound inference system
called linear resolution with unrestricted selection function based on trees (LUST)

[127, 1301. LUST resolution was useful for non-Horn theories in which an open-world
assumption (OWA) is made. As defined by Reiter, an open world is one in which no
assumptions are made about negation. That is, one has a first-order theory.

I thought that it would be useful to have a theory concerning negation that
worked like Reiter’s CWA for Horn theories, but applied to non-Horn theories. I
initially tried to develop a proof-theoretic method which seemed to work. In
January 1981 I was invited to visit Simon Bolivar University in Venezuela. Phillipe
Roussel, who had developed the first PROLOG implementation with Colmerauer,
was a visiting faculty member there. We discussed the problem, and he told me
about some ideas that he had regarding a model-theoretic approach. In the very
short period of time we had, about two days, we sketched some ideas. I then
returned to the U.S.A. and worked on the problem, sending Roussel my results. I
was finally able to obtain a soundness and completeness proof demonstrating that
the model-theoretical and the proof-theoretical methods gave the same results. In
the presence of non-Horn clauses, there is no unique minimal model; rather there
are a set of minimal models. In the model-theoretic approach, an atom that does not
appear in any minimal model is assumed to have its negation true. Thus, in the
database that consists of the non-Horn clause {p v q}, there are three models: {p},

{ q }, and { p, q }. Of these, two are minimal, { p } and { q }, and neither is contained
in the other. Hence, neither p nor q can be assumed to be false, as each appears in a
minimal model. In the proof-theoretic approach that I developed, I demonstrated
that if one cannot prove P(a) V K, where K is an arbitrary positive clause and one
cannot prove K, then one can assume not-P(a). I termed the method the general-
ized closed-world assumption (GCWA) [129]. I showed that for function-free
clauses the same responses to queries were obtained in the model-theoretic and the
proof-theoretic definitions of the GCWA. John Grant and I [135] have developed a
method to compute answers to queries in the ground non-Horn case where all
clauses (disjuncts of literals) are restricted to consist only of positive atoms.
Henschen and his students [66, 2051 have also attempted to develop methods to
answer queries in databases that comply with the GCWA. Gelfond, Przymusinska,
and Przymusinski [52] used the concept of the GCWA to develop an extended
closed-world assumption (ECWA). Przymusinski [152, 1531 has also shown how one
can utilize SL resolution to be able to answer queries in non-Horn databases subject
to the GCWA. He terms the modified inference system SLSNF (linear resolution
with subsumption based on negation as failure). The basic idea is to use SL
resolution on the negation of some positive atom, say p(a), first selecting only
negated atoms in a resolvent clause. Resolving away all negative literals leaves at
most positive literals. One then uses SL resolution to determine if, starting with a
clause containing the negation of the positive atoms, one can find a proof. If one
cannot find a proof, then one can assume the negation of the original atom, P(a).
For additional work on non-Horn clauses see Bossu and Siegel [14] and Bidoit and
Hull [12].

46 JACK MINKER

McCarthy [114] had done some important work in artificial intelligence in the
area of nonmonotonic reasoning that was of interest to me. I thought that his
concept of circumscription might be useful for some aspects of databases. In 1984,
Don Perlis and I started to look into this topic. After reviewing McCarthy’s paper,
we tried to apply his method to a particular problem in databases. We were
interested in answering queries in databases where it is known that it is unknown
whether or not a particular fact were true. That is, we may know P(a) is true and
we may also .know that we do not know whether or not P(b) is true. This situation
is not handled in relational databases. It also turned out that McCarthy’s original
concept of circumscription did not handle this case. We wrote a series of papers
[132-1341 in which we addressed this problem. We were able to show that a slightly
different “only if” statement than that specified by Clark could handle the situation,
and furthermore that one could modify the database to achieve a Horn theory that
could be used to compute answers. The Horn theory is sound, but in a few cases
does not give all answers. The interesting aspect of the work was the applicability of
circumscription to a problem in databases. Perlis and I [148] were also able to
obtain some completeness results for circumscription, and McCarthy [124] had
obtained a soundness result for circumscription. Reiter also recognized the possi-
bility of applying circumscription to databases. In [164] he shows how Clark’s
negation as failure is a consequence of circumscription for Horn clauses, and in
[165] he emphasizes the importance of circumscription for database theory. I shall
return to circumscription later.

In the area of recursive axioms as part of the Horn theory, Reiter’ [162] had
proposed that one avoids dealing with them by breaking cycles in axioms. Chang
[26] was the first to propose that one should use a connection graph to handle some
aspect of recursion. Jean-Marie Nicolas and I [128, 1291 worked together for a few
months on the problem of recursive axioms in the intensional database, while he
was on a sabbatical leave at the University of Maryland. We were able to show that
there are a number of interesting cases where recursion can be terminated, based on
the type of recursive axioms that one has. See related work by Naughton [143],
Naughton and Sagiv [142], and Ioannides and Wong [72]. Naqvi and Henschen [65,
1401, using a connection-graph approach, have extended the work by Chang to a
wider class of recursive axioms. It seems like “magic” that there has been a
mushrooming interest in handling recursive axioms, as evidenced by the work of
Bancilhon et al. [6], Beer-y and Ramakrishnan [lo], Kifer and Lozinskii [81], and
Lozinskii [ill]. Bancilhon and Ramakrishnan [7, 81 have performed a comprehen-
sive comparative study on these systems.

At the time of Nicolas’s visit, we had completed two books [48, 491 and were
working on the third book [51] that came out of workshops at Toulouse. During
Nicolas’s visit, Gallaire came to Maryland for a few days, and we decided that the
time was right to write a comprehensive survey article on deductive databases, since
much work had been done on the subject and it was time to put the work in
perspective. The survey article we wrote finally came to fruition in 1984 [50]. I
believe that the survey article accomplished what we had intended-to make the
literature on deductive databases more accessible and better known.

One of the main aspects of relational-database technology is the implementations
that have been developed to handle queries and updates. On the other hand, there
have been few implementations of large deductive databases. Although useful for

PERSPECTIVES IN DEDUCTIVE DATABASES 41

small databases that could reside entirely in main memory [36, 124, 1251, it was clear
very early that PROLOG was not a language suitable for database applications.
There are two major problems. The first is that most PROLOG systems are
interpreters and do not work with large databases. The second is the left-to-right
search. The paper by Bowen and Kowalski [15] that dealt with the use of metalevel
programming was, I thought, significant. It seemed to be a natural extension and
gave the promise of being able to modify PROLOG to obtain new control structures
within PROLOG. Hence, one need not be restricted to the control structure within
PROLOG. To be sure, one pays a price because of the necessity to do a double
interpretation. It seemed to me, however, that for databases this would not be a
significant penalty, since one could compile axioms once and set them up ap-
propriately, assuming that there were no recursive axioms. With this in mind, I
developed a meta-interpreter to interface between PROLOG and databases [17].
This was an early attempt, and more efficient interpreters can be developed (see, for
example, [109]). The work on MU-PROLOG [139, 1871 avoids a meta-interpreter
approach and has special indexing routines for working with large databases.
Another effort in the same direction is the work on NAIL! [189]. Other efforts in this
area include work by Warren [198], who developed a PROLOG program which
could take a query and, using information about indexing and other features,
transform the query so that the best literals are placed first. The work by Warren is
related closely to the work by Selinger et al. [176], accomplished for System R.
Grant and Minker [54-561 have developed a branch-and-bound algorithm to take
advantage of the fact that when one compiles queries in a deductive-database
context, then a set of conjunctive queries result. These queries generally share
relations that have to be searched. One may gain search speed if one optimizes a set
of queries, rather than optimizing a single conjunct at a time. See Sellis [177, 1781
for related work.

A result of Reiter [161] is that in a Horn database it is not necessary to use
integrity constraints during query search. Answers found with the theory without
integrity constraints will be the same as with integrity constraints. This does not
mean that one should not use integrity constraints during the search, as was noted
in the work of King [82], Hammer and Zdonik [62], McSkimin [177], and McSkimin
and Minker [118]. As stated earlier, the problem with these approaches was that
there was no general mechanism to handle integrity constraints. A formal approach
was developed by Chakravarthy in his thesis [19] and in a series of papers with
others [18, 20, 211. The utility of the approach is that it can substantially decrease
search time, and there is a once-only penalty to compile the axioms to take
advantage of the technique. The core of most expert systems should be a deductive
database. The integrity constraints supply the semantics of the domain of ap-
plication and therefore supply some of the “expertise” for an expert system. It is
also of interest to note that the approach can be utilized to provide informative

answers to a user. Thus, if a database were about parents, the query, “Who is both
the father and the mother of a particular person?’ should return the response, “A
person cannot be both the father and the mother of another person,” rather than the
answer that there is no one listed. That is, expert systems should have the capability
to provide informative answers. Gal and Minker [47] have shown how one may
obtain such informative answers. See [74] and [77] for related approaches to this
problem. A somewhat different approach has been taken by Imielinski [71].

48 JACKMINKER

It was clear to me (and to many others) in the 1970s that executing programs in
parallel was a natural for logic programming. One can see, obviously, how to take
advantage of AND/OR parallelism automatically in a logic program. A procedure
name with many bodies represents OR parallelism, while a procedure body repre-
sents AND parallelism. I was pleased, therefore, that my colleague Chuck Rieger
[169] designed the ZMOB parallel architecture, which consisted of 128 Z-80A
microprocessors interconnected on a high-speed ring structure. With some of my
students (Eisinger, Kasif, Kohli [41, 791) I designed a parallel inference system
(PRISM) that incorporated AND/OR parallelism. PRISM has been implemented on the
MCMOB system, a modification to ZMOB that consists of 16 Motorola 68000 proces-
sors interconnected on the ZMOB ring structure. Although designed for problem
solving and top-down search, PRISM can be used as a deductive database system. A
paper describing experiments using PRISM is in preparation.

While these efforts were taking place, Lloyd and Topor, in a series of three papers
[105, 106, 1081, developed a theoretical basis for deductive database systems which
are implemented using a PROLOG system as the query evaluator. They use a typed
first-order logic to express data, queries, and integrity constraints. They introduced
extended programs and extended goals for logic programming. In contrast to
Horn-clause logic, a clause in extended programs can have an arbitrary first-order
formula as its body, and similarly for an extended goal. They have provided a
definition of an answer to a query being correct with respect to a database and also
presented a definition of an integrity constraint being satisfied by a database. In
addition they have developed two query evaluation processes and have proved that
both are sound and, for definite and hierarchical databases, complete. A database is
hierarchical if the predicates in the program P can be partitioned into levels so that
the definition of level-O predicates consists solely of unit clauses and the bodies of
the clauses in the definition of level-j predicates (j > 0) contain only level-i

predicates, where i <j.
The work of Lloyd and Topor is important. They show that a formalism based on

first-order logic provides an expressive environment for modeling databases; that a
single formalism may be used, namely first-order logic; and that logic provides a
theoretical foundation required for databases.

The work previously described in this section, together with the book by Lloyd
[104] on the foundations of logic programming, sets forth major theoretical develop-
ments in these two fields that distinguishes the work in this period. There now exist
formal theories in both deductive databases and logic programming. Unified results
now exist in databases, rather than fragmented results on various topics.

In 1985 I thought that it would be important to bring together researchers from
the deductive-database and logic-programming communities. I received a grant
from the National Science Foundation and significant support from the University
of Maryland Institute of Advance Computer Studies to organize the Workshop on
Foundations of Deductive Databases and Logic Programming. The workshop was
held during the summer of 1986 in Washington, D.C. Papers at the workshop were
highly significant and will, I believe, set the tone for the next period in these two
areas [136]. I cannot recall a conference or a workshop where so much work of
significance came together at one time, except perhaps at the first Toulouse
workshop in 1977. The work that was reported shows the maturity which these two
fields have attained. Among the many outstanding papers I would like to cite a few.
This does not at all mean that the other papers were not significant.

PERSPECTIVES IN DEDUCTIVE DATABASES 49

Negation in logic programming has been troublesome even with the develop-
ments that have been cited above. It is interesting that three individuals addressed
this problem and others expanded upon it. Important theoretical results were
reported on what are now termed stratified databases. A stratified database is one in
which one deals with extended or general clauses that have negated atoms in the
antecedent of a clause. The consequent of a clause is a single atom. Hence, we are
referring to extended Horn clauses (since the antecedent of a Horn clause cannot
contain a negated atom). A database is strati$ed if the clauses can be so ordered
that if a negated atom appears in the body of a clause, then the definition of the
atom (the consequent of a clause) precedes the clause in which the negated atom
appears in the body of the clause. A stratified database is said to be “free from
recursive negation”, since stratification prevents recursion on negation. Theoretical
results in this area were obtained by Apt, Blair, and Walker [3] and Van Gelder
[192]. Apt et al. develop a fixed-point theory of nonmonotonic operators and apply
it to provide a declarative meaning of a general program. They also prove the
consistency of Clark’s completed model database for stratified programs and clarify
some previously reported problems with negation in logic programming. Van Gelder
showed that general logic programs with the so-called bounded-term-size property
and freedom from recursive negation are “completely classified” by what he refers
to as tight tree semantics in which every atom in the Herbrand base of the program
either succeeds or fails. As all programs terminate on every input, Van Gelder deals
only with a strict subset of what is computable, as opposed to Horn clauses.
Shamim Naqvi [141] also recognized the importance of stratified databases. The
importance of stratification in databases, in a slightly different context, was noted
by Chandra and Hare1 [23], who defined the class of stratified queries (which they
referred to as Class C). They showed that stratified queries are identical with
fixed-point queries defined by Chandra and Hare1 [22]. Two complementary papers
were written on this subject. Lifschitz [103] used McCarthy’s [115, 1161 concept of
prioritized circumscription to obtain results with respect to the semantics and
minimal model of stratified programs. Thus, again, we see the application of
circumscription to databases. For additional work on circumscription see [loo-1021.
To round out these papers, Przymusinski [152], using a model-theoretic approach
initiated in [131], extended the notion of stratified logic programs to deductive
databases which allow negative premises and disjunctive consequents. He intro-
duced the concept of perfect model of a database and showed that the set of perfect
models provides a correct semantics for such a database. He extends and strengthens
the results of Apt et al., Van Gelder, and Lifschitz. A paper by Shepherdson [180]
provides a comprehensive, excellent survey on negation in deductive databases and
logic programming.

In other work reported at the workshop, Paris Kanellakis [76] presented a
significant survey on logic programming and parallel complexity. The logic-
programming problems addressed are related to query optimization for deductive
databases and to fast parallel execution of primitive operations in logic-program-
ming operations, such as fixpoint operators, term unification, and term matching.
Sagiv [172] showed how one can optimize a class of function-free logic programs.
Rodney Topor presented a paper (Topor and Sonenberg [ISS]) that shed light on the
problems that Kuhns first studied in the 1960s. They introduce and study a class of
“domain-independent” databases: databases for which the set of correct answers to
a query is independent of the domains of variables in database clauses. They prove

50 JACK MINKER

that every “allowed” stratified database is domain independent and that every
domain independent stratified database has an equivalent allowed database. See
Vardi [194] for work on the decision problem related to the work by Kuhns.
Kowalski and Sadri [90] proposed an extension to SLDNF for checking constraints
in deductive databases. They achieve the effect of the simplification methods of
Nicolas [147], Lloyd and Topor [107], and Decker [37] in their work. In addition to
his work on intelligent answers noted earlier, Imielinski [70, 711 addresses three
different types of incomplete information: (1) existentially quantified statements, (2)
existentially quantified statements with range-coupled existential quantifiers, and (3)
arbitrary disjunctive information.

I am currently editing a book entitled Foundations of Deductive Databases and
Logic Programming that will consist of refereed papers drawn from the workshop.

5. FUTURE DIRECTIONS

We have seen a tremendous spurt of research in the areas of deductive databases
and logic programming during the past few years. These developments are an
outgrowth of work that was started in automated theorem proving. It led to
foundational work in deductive databases and in logic programming. It has led to
the clarification and handling of negation, null values, indefinite databases,
integrity-constraint checking, and syntactic and semantic optimization of database
programs, as well as other developments. Work from artificial intelligence dealing
with nonmonotonic reasoning and circumscription are also seen to have played an
important role in these developments.

Today, a great deal of consideration is being given to the concept of expert
systems. Whatever one considers an expert system to be, it is clear that deductive
databases and logic programming will play a prominent role. To achieve capabilities
for expert systems such as the ability to review a proof tree and the ability to handle
fuzzy data and interactive responses, two basic methods may be used. These are to
develop meta-interpreters [184-1861 or to use a logic language directly [28]. The
ability to work with large masses of extensional and intensional axioms will require
interfacing logic programs with database technology. An effective amalgamation has
not yet been achieved. However, it is clear that this can be accomplished and is only

a matter of time and funding.
There remains a great deal that still has to be clarified about databases them-

selves. Handling updates and deletions efficiently and intelligently has yet to be
achieved. Effective computation methods are required for alternative database
classes, such as databases that are non-Horn, contain null values, or are not
function-free. The work by Imielinski [70, 711 to obtain approximate answers to
queries is of interest here.

I believe, moreover, that deductive databases will have a major impact on
artificial intelligence (AI). Significant progress has been made in databases only
since theoretical foundations started to be developed. I refer here to the work of
Codd and the work of those who have developed the field of dependencies described
by Ullman [190], as well as in deductive databases as described here. The AI
community must move towards theories that describe phenomena. They can no
longer rely on programs that illustrate techniques and whose theory is somehow
embedded in a program. It is extremely difficult to understand a theory that consists

PERSPECTIVES IN DEDUCTIVE DATABASES 51

of a program and to abstract out broader concepts. Promising work here is being
done by McCarthy [114] on circumscription, and by Reiter on nonmonotonic

reasoning [163] and more recently on his theory of medical diagnosis [166]. For a
comprehensive survey on nonmonotonic reasoning see [168].

The reason for the centrality of deductive databases is due to the need in all of
the work to have facts and intensional statements about the world. Thus, part of the
theory must deal with the nature of the database. Integrity constraints effectively
describe the semantics of the database. In AI belief systems we will have to describe
the semantics of the users, since they represent the beliefs that the users have about
the world, which may or may not be the same for each user, and for that matter may
or may not be the same as that of the database. Thus, work on belief systems in AI
will also be important for.databases. Interesting work in this connection is being
done by Gelfond and Przymusinska [53], Fagin and Halpern [42, 431, Levesque [95],
Perlis [149], and Vardi 11951.

It is interesting to note that work in theorem proving that was denigrated because
of its “complexity” has been the basis for the theories described here. This does not
mean that pure theorem proving was the only tool used. But certainly, it was the
primary tool that was the basis of the work. Logics other than variations of
first-order logic, such as higher-order logics, may be important in future develop-
ments. However, this remains to be seen. For references related to other logics, see
[180].

The subjects of deductive databases and logic programming are important,
viable, and thriving disciplines still growing toward their prime.

It seems to me that the fields of databases, logic programming, deductive
databases, artificial intelligence, and expert systems will move towards one another.
Formalisms and techniques developed in each of these areas will assist the others.
Science builds on theories. Theories developed for deductive databases and logic
programming will, therefore, be built upon to further developments in the above
subjects.

The following grants supported this work: AFOSR 82-0303, AR0 DAAG-29-85-K-0177, and NSF

IRI-8609170. I would like to express my appreciation to John Grant, Jorge Lobo, Don Perlis, Arcot

Rajasekar, and Deepak Sherlekar for their suggestions regarding the paper. I especially thank my wife,

Rita G. Minker, for her comments on the paper, for being so supportive of my work, and for sharing her

life with me.

In preparing the paper for publication, I have tried to assure the accuracy of the early historical

information and I asked many individuals for comments. I am grateful to Krzysztof Apt, Ashok

Chandra, Maarten van Emden, Herve Gallaire, Cordell Green, Larry Henschen, Lary Kuhns, Jean-Louis

Lassez, M. E. (Bill) Maron, Jean-Marie Nicolas, Ray Reiter, and Rodney Topor for sending me their

comments. I have incorporated most of their suggestions in the text. I am, of course, responsible for any

errors that may remain.

REFERENCES

1. Ait-Kaci, H. and Nasr, R., LOGIN: A Logic Programming Language with Built-In

Inheritance, J. Logic Programming 3(3):185-215 (Oct. 1986).

2. Apt, K. R. and van Ernden, M. H., Contributions to the Theory of Logic Programming,
J. Assoc. Comput. Mach. 29:841-862 (1982).

52 JACK MINKER

3. Apt, K. R., Blair, H. A., and Walker, A., Towards a Theory of Declarative Knowledge,
in: J. Minker (ed.), Proceedings of the Workshop on Foundations of Deductive Databases
and Logic Programming, Washington, 18-22 Aug. 1986, pp. 546-623.

4. Aqvist, L., A New Approach to the Logical Theory of Interrogatives: Part 1, Analysis,
Univ. of Uppsala, Sweden, 1965.

5. Ash, W. L. and Sibley, E. H., TRAMP: An Interpretive Associative Processor with
Deductive Capabilities, in: Proceedings of the 1968 ACM National Conference, Prince-
ton, N.J., 1968, pp. 143-156.

6. Bancilhon, F., Sagiv, Y., and Ullman, J., Magic Sets and Other Strange Ways to
Implement Logic Programs, in: Proceedings of the 5th ACM SIGMOD-SIGACT News
Symposium on Principles of Database Systems, 1986.

7. Bancilhon, F., and Ramakrishnan, R., An Amateur’s Introduction to Recursive Query
Processing Strategies, in: Proceedings of ACM SIGMOD ‘86, Washington, 28-30 May
1986, pp. 16-52.

8. Bancilhon, F. and Ramakrishnan, R., Performance Evaluation of Data Intensive Logic
Programs, in: J. Minker (ed.), Proceedings of the Workshop on Foundations of Deductive
Databases and Logic Programming, Washington, 18-22 Aug. 1986, pp. 284-314.

9. Battani, G. and Meloni, M., Interpreteur du Language de Programmation PROLOG,
Internal Technical Report, Groupe d’Intelligence Artificielle, Univ. d’Aix-Marseille II,
1973.

10. Beeri, C. and Ramakrishnan, R., On the Power of Magic, in: Proceedings on Principles
of Database Systems, San Diego, Mar. 1987, 269-283.

11. Belnap, N. D., An Analysis of Questions: Preliminary Report, TM-128/000/00, System
Development Corp., 3 June 1963.

12. Bidoit, N. and Hull, R., Positivism vs. Minimalism in Deductive Databases, in:
Proceedings of the ACM SIGACT-SIGMOD News Symposium on the Principles of
Database Systems, Cambridge, Mass., 1986, pp. 123-132.

13. Bledsoe, W. W., Splitting and Reduction Heuristics in Automatic Theorem Proving,
ArtiJcial Intelligence 2(1):55-77 (1971).

14. Bossu, G. and Siegel, P., Saturation, Nonmonotonic Reasoning and the Closed-World
Assumption, ArtiJicial Intelligence 25(1):13-63 (Jan. 1985).

15. Bowen, K. and Kowalski, R. A., Amalgamating Language and Metalanguage, in: K.
Clark and S. A. Tarnlund (eds.), Logic Programming, Academic, London, 1982, pp.
153-172.

16. Camap, R., Meaning and Necessity (Enlarged Edition), Univ. of Chicago Press, Chicago,
1956.

17. Chakravarthy, U. S., Minker, J., and Tran, D., Interfacing Predicate Logic Languages
and Relational Databases, in: Proceedings of the 1st Logic Programming Conference,
France, Sept. 1982.

18. Chakravarthy, U. S., Fishman, D. H., and Minker, J., Semantic Query Optimization in
Expert Systems and Database Systems, in: L. Kerschberg (ed.), Expert Database
Systems, Benjamin Cummings Pub. Co., 1986, 659-675.

19. Chakravarthy, U., Semantic Query Optimization in Deductive Databases, Ph.D. Thesis,
Univ. of Maryland, College Park, Aug. 1985.

20. Chakravarthy, U. S., Grant, J., and Minker, J., Semantic Query Optimization: Ad-
ditional Constraints and Control Strategies, in: L. Kerschberg (ed.), Proceedings on
Expert Database Systems, Charleston, Apr. 1986, pp. 259-269.

21. Chakravarthy, U. S., Grant, J., and Minker, J., Foundations of Semantic Query
Optimization for Deductive Databases, in: J. Minker (ed.), Proceedings of the Workshop
on Foundations of Deductive Databases and Logic Programming, Washington, D.C.,
18-22 Aug. 1986, pp. 67-101.

22. Chandra, A. and Harel, D., Structure and Complexity of Relational Queries, J. Comput.
System Sci. 25:99-128 (1982).

PERSPECTIVES IN DEDUCTIVE DATABASES 53

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Chandra, A. and Harel, D., Horn Clause Queries and Generalizations, J. Logic
Programming 2(1):1-15 (Apr. 1985).

Chang, C. L. and Lee, R. C. T., in: Symbolic Logic and Mechanicul Theorem Proving,
Academic, New York, 1973.

Chang, C. L., DEDUCE 2: Further Investigations of Deduction in Relational Databases,
in: H. Gallaire and J. Minker (eds.), Logic and Datuhuses, Plenum, New York, 1978, pp.
201-236.

Chang, C. L., On Evaluation of Queries Containing Derived Relations, in: H. Gallaire,
J. Minker, and J. Nicolas (eds.), Aduanced in Datahuse Theory, Vol. 1, Plenum, New
York, 1981, pp. 235-260.

Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.), Logic und Dutu
Buses, Plenum, New York, 1978, pp. 293-322.

Clark, K. L. and McCabe, F. G., A Language for Implementing Expert Systems, in: P.
Hayes, D. Michie, and Rao (eds.), Muchine Intelligence IO, Ellis Horwood, 1982, pp.
455-470.

Codd, E. F., A Relational Model of Data for Large Shared Data Banks, Comm. ACM
13(6):377-387 (June 1970).

Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P., “Un Systeme de Communi-
cation Homme-Machine en Francais, Technical Report, Univ. d’Aix-Marseille, II,
Marseille, 1973.

Colmerauer, A., An Interesting Natural Language Subset, in Proceedings of the Work-
shop on Logic and Databases, Toulouse, 1977.

Colmerauer, A., Un Sous-Ensemble Interessante du Francais, RAIRO Inform. ThCor.
4:309-336 (1979).

Relational Structures Research, Computer Corp. of America, Contract DA18-119-
AMC-03409(X), F/R18-119-36-00326(X), 6 Apr. 1966-5 July 1967.

Fundamentals of Relational Structures, ESD-Tech. Rep.-68-404, Computer Corp. of
America, Contract No. AF 19 (628)-5939, Electronic Systems Divisions, Air Force
Systems Command, United States Air Force, L. G. Hanscom Field, Bedford, Mas-
sachusetts, 3 Sept. 1969.

Relational Structures Applications Research, DAAB03, Computer Corp. of America, 5
May 1967-31 Mar. 1969.

Dahl, V., On Database Systems Development through Logic, ACM Trans. Dutuhuse
Systems 7(1):102-123 (Mar. 1982).

Decker, H., Integrity Enforcement on Deductive Databases, in: Proceedings of EDS 86,
South Carolina, 1986, 271-285.

Deliyanm, G. and Kowalski, R. A., Logic and Semantic Networks, Comm. ACM
22(3):184-192 (1979).

DiPaola, R. A., The Recursive Unsolvability of the Decision Problem for the Class of
Definite Formulas, J. Assoc. Comput. Much. 16(2):324-327 (Apr. 1968); Rand Corp.

DiPaola, R. A., The Relational Data File and the Decision Problem for Classes of
Proper Formulas, in: J. Minker and S. Rosenfeld (eds.), Proceedings of the Symposium
on Information Storage and Retrieval, College Park, l-2 Apr. 1971.

Eisinger, N., Kasif, S., and Minker, J., Logic Programming: A Parallel Approach, in:
Proceedings of the Logic Programming Conference, Marseilles, France, Sept. 1982, pp.
71-77.

Fagin, R., Halpern, J. Y., and Vardi, M. Y., A Model-Theoretic Analysis of Knowledge,
in: Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, West
Palm Beach, 1984, pp. 268-278.

Fagin, R. and Halpem, J. Y., Belief, Awareness and Limited Reasoning, Proceedings of
the 9th International Conference on Artificial Intelligence, Los Angeles, 1985, pp. 491-501.

Fishman, D. H., Experiments with a Resolution-Based Deductive Question-Answering
System and a Proposed Clause Representation for Parallel Search, Ph.D. Thesis, Dec.
1 a71

54 JACK MINKER

45. Fishman, D. H. and Minker, J., PI-Representation: A Clause Representation for
Parallel Search, ArtiJciuI Intelligence 6(2):103-127 (1975).

46. Futo, I., Darvas, F., and Szeredi, P., The Application of PROLOG to the Development
of QA and DBM Systems, in: H. Gallaire and J. Minker (eds.), Logic and Data Buses,
Plenum, New York, 1978, pp. 347-375.

47. Gal, A. and Minker, .I., A Natural Language Database Interface that Provides Coopera-
tive Answers, in: Proceedings of the Second Conference on ArtiJicial Intelligence Apphca-
tions, Florida, 11-13 Dec. 1985,352-357.

48. Gallaire, H. and Minker, J., Logic and Databases, Plenum, New York, Apr. 1978.

49. Gal&e, H., Minker, J., and Nicolas, J., Advances in Databuse Theory, Vol. 1, Plenum,
New York, 1981.

50. Gal&e, H., Minker, J., and Nicolas, J., Logic and Databases: A Deductive Approach,
ACM Comput. Surveys 16(2):153-185 (June 1984).

51. Gallaire, H., Minker, J., and Nicolas, J., Advances in D&abuse Theory, Vol. 2, Plenum,
New York, 1984.

52. Gelfond, M., Przymusinska, H., and Przymusinski, T., The Extended Closed World
Assumption and its Relation to Parallel Circumscription, in: Proceedings of the ACM
SZGACT News-SZGMOD Symposium on Principles of Database Systems, 1986, pp.
133-139.

53. Gelfond, M. and Przymusinska, H., Negation as Failure: Careful Closure Procedure,
Artzjkial ZnteZligence 30(3):273-286 (Dec. 1986).

54. Grant, J. and Minker, J., Optimization in Deductive and Conventional Relational Data
Base Systems, in: H. Gallaire, J. Minker, and J. Nicolas (eds.), Advances in Data Base
Theory, Vol. 1, Plenum, New York, 1981, pp. 195-234.

55. Grant, J. and Minker, J., On Optimizing the Evaluation of a Set of Expressions,
Znternat. .Z. Comput. Inform. Sci. 11:179-191 (1982).

56. Grant, J. and Minker, J. A Set Optimizing Algorithm, in: Proceedings of the Conference
on Information Sciences and Systems, New Jersey, 1982, pp. 259-263.

57. Green, C. C. and Raphael, B., The Use of Theorem-Proving Techniques in Question-
Answering Systems, in Proceedings of the 23rd National Conference ACM, Washington,
1968.

58. Green, C. C., The Application of Theorem Proving to Question-Answering Systems,
Tech. Rep. CS 138, Ph.D. Thesis, Computer Science Dept., Stanford Univ., June 1969,
ARPA Order No. 457, RADC Contract F30602-69-C-0056.

59. Green, C. C., Application of Theorem Proving to Problem Solving, in: D. E. Walker and
L. M. Norton (eds.), Proceedings of the International Conference on Arti$cial Intelligence,
Washington, 1969, pp. 219-240.

60. Green, C. C., Theorem Proving by Resolution as a Basis for Question-Answering
Systems, in: B. Meltzer and D. Michie (eds.), Machine ZnteZIigence 4, Edinburgh U.P.,
New York, 1969, pp. 183-205.

61. Gurk, H. and Minker, J., The Design and Simulation of an Information Processing
System, J. Assoc. Comput. Much. 8(2):260-270 (Apr. 1961).

62. Hammer, M. T. and Zdonik, S. B., Knowledge-Based Query Processing, in: Proceedings
of the 6th International Conference on Vety Large Data Bases, New York, l-3 Oct. 1980,
pp. 137-147.

63. Harrah, D., Communication: A Logical Model, MIT Press, Cambridge, Mass., 1963.

64. Hart, P. E., Nilsson, N. J., and Raphael, B., A Formal Basis for the Heuristic
Determination of Minimum Cost Paths, IEEE Trans. Systems Cybernet. SSC-
4(2):100-107 (1968).

65. Henschen, L. J. and Naqvi, S. A., On Compiling Queries in Recursive First-Order
Databases, J. Assoc. Comput. Mach., 31(1):47-85 (Jan. 1984).

66. Henschen, L. J. and Park, H., Compiling the GCWA and Indefinite Databases, in: J.
Minker (ed.), Workshop on Foundations of Deductive Databases and Logic Programming,
22-28 Aug. 1986.

PERSPECTIVESIN DEDUCTIVEDATABASES 55

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Hewitt, C. E., PLANNER: A Language for Proving Theorems in Robots, in: First
International Joint Conference on ArtiJcial Intelligence, Washington, 1969, pp. 295-301.

Hill, R., LUSH Resolution and its Completeness, DCL Memo No. 78, School of
Artificial Intelligence, Aug. 1974.

Hodes, L., Programming Languages, Logic and Cooperative Games, presented at
Symposium for Symbolic and Algebraic Manipulation, Mar. 1966.

Imielinski, T., Automated Deduction in Databases with Incomplete Information, in: J.
Minker (ed.), Proceedings on the Foundations of Deductive Databases and Logic Program-
ming, Washington, 18-22 Aug. 1986, pp. 242-283.

Imielinski, T., Intelligent Query Answering in Rule Based Systems, in: J. Minker (ed.),
Foundations of Deductive Databases and Logic Programming, Morgan-Kaufman,
Washington, 1987.

Ioannidis, Y. E. and Wong, E., An Algebraic Approach to Recursive Inference, in: L.
Kerschberg (ed.), Proceedings of the First International Conference on Expert Database
Systems, Apr. 1986, pp. 209-223.

Jall’ar, J., Lassa, J., and Lloyd, J. W., Completeness of the Negation as Failure Rule, in:
Proceedings Eighth International Joint Conference on Artificial Intelligence, Karlsruhe,
West Germany, 8-12 Aug. 1983, pp. 500-506.

Janas, J. M., On the Feasibility of Informative Answers, in: H. Gallaire, J. Minker, and
J. Nicolas (eds.), Advances in Database Theory, Vol. 1, New York, 1978, pp. 397-414.

Jespersen, O., The Philosophy of Grammar, Norton, New York, 1965.

Kanellakis, P., Logic Programming and Parallel Complexity, in: J. Minker (ed.),
Proceedings of the Workshop on Foundations of Deductive Databases and Logic Program-
ming, Washington, 18-22 Aug. 1986, pp. 629-657.

Kaplan, S. J., Cooperative Responses from a Portable Natural Language Query System,
Arttficial Intelligence 19(2):165-187 (Oct. 1982).

Kasher, A., Data-Retrieval by Computer: A Critical Survey, in: M. Kochen (ed.), The
Growth of Knowledge, Wiley, New York, 1967, pp. 292-324.

Kasif, S., Kohli, M., and Minker, J., PRISM: A Parallel Inference System for Problem
Solving, in: Proceedings of the Eighth International Joint Conference on Artificial Intelli-
gence, West Germany, 8-12 Aug. 1983, pp. 544546.

Kellogg, C., Klahr, P., and Travis, L., Deductive Planning and Pathfinding for Relational
Data Bases, in: H. Gallaire and J. Minker (eds.), Logic and Data Bases, Plenum, New
York, 1978, pp. 179-200.

Kifer, M. and Lozinskii, E., Query Optimization in Logic Databases, Technical Report,
SUNY at Stony Brook, June 1985.

King, J. J., QWST: A System for Semantic Query Optimization in Relational Databases,
in: Proceedings of the 7th International Conference on Very Large Data Bases, New York,
9-11 Sept. 1981, pp. 510-517.

Kochen, M., Automatic QA of English-Like Questions about Simple Diagrams, J.
Assoc. Comput. Mach. 16:26-48 (Jan. 1969).

Kowalski, R. A. and Hayes, P. J., Semantic Trees in Automatic Theorem-Proving, in: B.
Meltzer and D. Michie (eds.), Machine Inteihgence 4, Edinburgh U.P., 1968, pp. 87-101.

Kowalski, R. A., Search Strategies for Theorem Proving, in: B. Meltzer and D. Michie
(eds.), Machine Intelligence 5, Edinburgh U.P., New York, 1969, pp. 179-200.

Kowalski, R. A. and Kuehner, D., Linear Resolution with Selection Function, in
Artijicial Intelligence, Vol. 2, 1971, pp. 227-260.

Kowalski, R. A., AND-OR Graphs Theorem Proving Graphs and Bidirectional Search, in:
B. Meltzer and D. Michie (eds.), Machine Intelligence 7, Edinburgh U.P., New York,
1972, pp. 167-194.

Kowalski, R. A., Predicate Logic as a Programming Language, in: Proceedings of ZFZP
4, Amsterdam, 1974, pp. 569-574.

Kowalski, R. A., Logic for Data Description, in: H. Gallaire and J. Minker (eds.), Logic
and Data Bases, Plenum, New York, 1978, pp. 77-102.

56 JACK MINKER

90. Kowalski, R. and Sadri, F., An Application of General Purpose Theorem Proving to
Database Integrity, in: J. Minker (ed.), Proceedings of the Workshop on Foundations of
Deductive Databases and Logic Programming, Washington, 18-22 Aug. 1986, pp.
477-517.

91. Kuhns, J. L., Answering Questions by Computer: A Logical Study, RM-5428-PR, Rand
Corp., Dec. 1967.

92. Kuhns, J. L., Logical Aspects of Questions Answering by Computer, presented at Third
International Symposium on Computer and Information Sciences, Miami Beach, Fla.,
1969, P-4251.

93. Kuhns, L., Quantification in Query Systems, in: J. Minker and S. Rosenfeld (eds.),
Proceedings of the Symposium on Information Storage and Retrieval, l-2 Apr. 1971, pp.
81-93.

94. Lassez, J. and Maher, M. J., Closure and Fairness in the Semantics of Programming
Logic, Theoret. Comput. Sci. 29:167-184 (1984).

95. Levesque, N. J., A Logic of Implicit & Explicit Belief, in: Proceedings of the National
Conference on ArtiJicial Intelligence, 1984, pp. 198-202.

96. Levien, R. and Maron, M. E., Relational Data File: A Tool for Mechanized Inference
Execution and Data Retrieval, Rand Corp., Dec. 1965.

97. Levien, R. E., Relational Data File II: Implementation, in: Proceedings of the Annual
National Colloquium on Information Retrieval, Washington, 1967, pp. 225-241.

98. Levien, R. E. and Maron, M. E., A Computer System for Inference Execution and Data
Retrieval, Comm. ACM, 10:715-721 (Sept. 1966).

99. Levien, R. E., Relational Data File: Experience with a System for Propositional Data
Storage and Inference Execution, RM-5947-PR, Rand Corp., Apr. 1969.

100. Lifschitz, V., Closed World Databases and Circumscription, ArtiJicial Intelligence
27(2):229-235 (Nov. 1985).

101. Lifschitz, V., Computing Circumscription, in: Proceedings of the Ninth International
Joint Conference on Artijcial Intelligence, Los Angeles, 1985, pp. 121-127.

102. Lifschitz, V., On the Satisfiabihty of Circumscription, ArtiJicial Intelligence 28(1):17-27
(1986).

103. Lifschitz, V., On the Declarative Semantics of Logic Programs with Negation, in:
Proceedings on the Foundations of Deductive Databases and Logic Programming,
Washington, 18-22 Aug. 1986, pp. 420-432.

104. Lloyd, J. W., Foundations of Logic Programming, Springer, 1984.

105. Lloyd, J. W. and Topor, R. W., Making PROLOG More Expressive, J. Logic Program-
ming 1(3):225-240 (Oct. 1984).

106. Lloyd, J. W. and Topor, R. W., A Basis for Deductive Databases Systems, J. Logic
Programming 2(2):93-109 (July 1985).

107. Lloyd, J. W., Sonenberg, E. A., and Topor, R. W., Integrity Constraint Checking In
Stratified Databases, Tech. Rep. 86/5 Univ. of Melbourne, 1986; J. Logic Progrum-
ming, to appear.

108. Lloyd, J. W. and Topor, R. W., A Basis for Deductive Database Systems II, J. Logic
Programming 3(1):55-67 (Apr. 1986).

109. Lobo, J. and Minker, J., A Metainterpreter to Semantically Optimize Queries in
Deductive Databases, UMIACS #8721, Computer Science Center Tech. Rep. 1861,
Univ. of Maryland, College Park, June 1987.

110. Love, H. H. and Rutman, R. A., ASP User’s Manual Association Storing Processor
Interpreter Program, Revised, Report FR # 70-11-275, Hughes Aircraft Co., Fullerton,
Calif., Jan. 1970.

111. Lozinskii, E. L., Evaluating Queries in Deductive Databases by Generating, in: Pro-
ceedings of the Ninth Internutional Joint Conference on Artijiciul Intelligence, 1985, pp.
173-177.

PERSPECTIVES IN DEDUCTIVE DATABASES 51

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Marill, T. and Murray, H., Computer Comprehension of Natural Language; a Progress
Report on the Relational Structure System, unpublished report Computer Corp. of
America, 17 Jan. 1969.

Maron, M. E., Relational Data File Design I: Design Philosophy, in: G. Schecter (ed.),
Information Retrieval, Washington, 1967, pp. 211-223.

McCarthy, J., Circumscription-A Form of Nonmonotonic Reasoning, ArtiJcial Intel-
ligence 13(1 and 2):27-39 (1980).

McCarthy, J., Applications of Circumscription to Formalizing Common Sense Knowl-
edge, in: Proceedings of the AAAI Workshop on Non-monotonic Reasoning, New Paltz,
N.Y., 1984, pp. 295-323.

McCarthy, J., Applications of Circumscription to Formalizing Common Sense Knowl-
edge, ArtiJcial Intelligence 28(1):89-116 (1986).

McSkimin, J. R., Techniques for Employing Semantic Information in Question-
Answering Systems, Ph.D. Disseftation, Univ. of Maryland, College Park, 1976.

McSkimin, J. R. and Minker, J., The Use of a Semantic Network in Deductive
Question-Answering Systems, in: Proceedings of IJCAI 5, 1977, pp. 50-58.

Minker, J., Shindle, W. E., Miller, L., and Reed, W. G., A Multi-level File Structure for
Information Processing, in: Proceedings of the Western Joint Computer Conference
NJCC No. 17, San Francisco, May 1960, pp. 53-59.

Minker, J. and Sable, J., File Organization and Data Management, in: Annual Review of
Information Science and Technology, Vol. 2, New York, 1967.

Minker, J. and Sable, J. D., Relational Data System Study, Final Report, AUER-1776-
Tech. Rep.-1, Auerbach Corp., July 1970.

Minker, J. and Sable, J., Relational Data System Study, Final Report, RADC-Tech.
Rep.-70-180, Rome Air Development Center, Sept. 1970.

Minker, J., Fishman, D. H., and McSkimin, J. R., The Q* Algorithm-a Search
Strategy for a Deductive Question-Answering System, Art$cial Intelligence 4:225-243
(1973).

Minker J., Performing Inferences over Relational Databases, in: Proceedings of the
ACM SIGMOD International Conference on Management of Data, 1975, pp. 79-91.

Minker, J., Search Strategy and Selection Function for an Inferential Relational System,
Trans. Data Base Systems 3(1):1-31 (Mar. 1978).

Minker, J., An Experimental Relational Data Base System Based on Logic, in: H.
GaIlaire and J. Minker (eds.), Logic and Data Bases, Plenum, New York, Apr. 1978, pp.
107-147.

Minker, J. and Zanon, G., LUST Resoiution: Resolution with Arbitrary Selection
Function, Tech. Rep. 736, Univ. of Maryland, Feb. 1979.

Minker, J. and Nicolas, J., On Recursive Axioms in Relational Databases, Tech. Rep.
1119, Univ. of Maryland, July 1981.

Minker, J., On Indefinite Databases and the Closed World Assumption, in: Lecture
Notes in Computer Science 138, Springer, 1982, pp. 292-308.

Minker, J. and Zanon, G., An Extension to Linear Resolution with Selection Function,
Inform. Process. Lett. 14(3):191-194 (13 June 1982).

Minker, J. and Nicolas, J., On Recursive Axioms in Deductive Databases, Inform.
Systems 7(4):1-15 (1982).

Minker, J. and Perlis, D., Applications of Protected Circumscription, in: Proceedings of
the Conference on Automated Deduction, California, May 1984.

Minker, J. and Perlis, D., Protected Circumscription, in: Proceedings of the Workshop on
Non-monotonic Reasoning, New PaItz, N.Y., 17-19 Oct. 1984, pp. 337-343.

Minker, J. and PerIis, D., Computing Protected Circumscription, J. Logic Programming
2(4):235-249 (Dec. 1985).

Minker, J. and Grant, J. Answering Queries in Indefinite Databases and the Null Value
Problem, in: P. Kanellakis, (ed.), Advances in Computing Research, 1986, pp. 247-267.

58 JACKMINKER

136. J. Minker, Proceedings of Workshop on Foundations of Deductive Databases and Logic
Programming, 18-22 Aug. 1986.

137. Montgomery, C. A., Automated Language Processing, in: C. A. Cuadra (ed.), Annual
Review of Information Science and Technology, Vol. 4, Chicago, 1969, pp. 145-174.

138. Moto-Oka, T., Challenge for Knowledge Information Processing Systems (Preliminary
Report on Fifth Generation Computer Systems), in: Proceedings of the International
Conference on Fifth Generation Computer Systems, 1981, p. l-85.

139. Naish, L. and Thorn, J. A., The MU-PROLOG Deductive Database, Tech. Rep. 83/10,
Univ. of Melbourne, 1983.

140. Naqvi, S. A. and Henschen, L. .I., Performing Inferences over Recursive Data Bases, in:
Proceedings of the 1st Annual National Conference on Artificial Intelligence, Stanford,
Conn., Aug. 1980, pp. 263-265.

141. Naqvi, S. A., A Logic for Negation in Database Systems, in: J. Minker (ed.), Proceed-
ings of Workshop on Foundations of Deductive Databases and Logic Programming,
Washington, 18-22 Aug. 1986, pp. 378-387.

142. Naughton, J. F. and Sagiv, Y., A Decidable Class of Bounded Recursions, in: Proceed-
ings of the Sixth ACM SIGACT News-SIGMOD-SIGART Symposium on Principles of
Database Systems, San Diego, Calif., 23-25 Mar. 1987, pp. 227-236.

143. Naughton, J. F., One-Sided Recursions, Proceedings of the Sixth ACM SIGACT
News-SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego,
Cahf., 23-25 Mar. 1987, pp. 340-348.

144. Nicolas, J. and Syre, J., Natural Question-Answering and Automatic Deduction in
System SYNTEX, in: Proceedings of IFIP Congress 1974, Amsterdam, 1974, pp. 595-599.

145. Nicolas, J. and Yazdanian, K., Integrity Checking in Deductive Databases, in: H.
GaIlaire and J. Minker (eds.), Logic and Databases, Plenum, New York, 1978, pp.
325-599.

146. Nicolas, J. and Gallaire, H., Data Base: Theory vs. Interpretation, in: H. Gallaire and J.
Minker (eds.), Logic and Data Bases, Plenum, New York, 1978, pp. 33-54.

147. Nicolas, J., Logic for Improving Integrity Checking in Relational Data Bases, Acta
Znform. 18(3):227-253 (1982).

148. Perhs, D. and Minker, J., Completeness Results for Circumscription, Artificial Intelli-
gence 28(1):29-42 (1986).

149. Perlis, D., Circumscribing with Sets, Artijcial Intelligence 31(2):201-211 (Feb. 1987).

150. Pirotte, A., High Level Data Base Query Languages, in: H. GaIlaire and J. Minker
(eds.), Logic and Data Bases, New York, 1978, pp. 409-436.

151. Porto, A., Semantic Unification for Knowledge Base Deduction, in: J. Minker (ed.),
Proceedings of the Workshop on Foundations of Deductive Databases and Logic Program-
ming, Washington, 18-22 Aug. 1986, pp. 102-117.

152. Ptzymusinski, T. C., On the Semantics of Stratified Deductive Databases, in: J. Minker
(ed.), Proceedings of the Workshop on Foundations of Deductive Databases and Logic
Programming, Washington, 18-22 Aug. 1986, pp. 433-443.

153. Przymusinski, T., A Query Answering Algorithm for Circumscriptive Theories, in:
Proceedings of the ACM SIGART International Symposium on Methodologies for Intelii-
gent Systems, Knoxville, Term., Oct. 1986, pp. 85-93.

154. Ptzymusinski, T., Query Answering in Circumscriptive and Closed World Theories, in:
Proceedings of the American Association for Artificial Intelligence ‘86, Philadelphia, Aug.
1986, pp. 186-190.

155. Raphael, B., SIR: A Computer Program for Semantic Information Retrieval, MAC-TR2,
Project MAC, Ph.D. Thesis, MIT, June, 1964.

156. Raphael, B., SIR: A Computer Program for Semantic Information Retrieval, in: Proceed-
ings of the AFIPS 1964 Fall Joint Computer Conference, Vol. 26, Pt. 1, Spartan Books,
New York, June 1964, pp. 577-589.

157. Raphael, B., A Computer Program for Semantic Information Retrieval, in: M. Minsky
(ed.), Semantic Information Processing, 1968, pp. 33-134.

PERSPECTIVES IN DEDUCTIVE DATABASES 59

158. Reiter, R., Two Results on Ordering for Resolution with Merging and Linear Format, J.
Assoc. Comput. Much. 18:630-646 (Oct. 1971).

159. Reiter, R., An Approach to Deductive Question-Answering, Tech. Report 3649, Bolt,
Beranek and Newman, Inc., Cambridge, 1977.

160. Reiter, R., Deductive Question-Answering on Relational Data Bases, in: H. Gallaire
and J. Minker (eds.), Logic and Data Bases, Plenum, New York, 1978, pp. 149-177.

161. Reiter, R., On Closed World Data Bases, in: H. Gallaire and J. Minker (eds.), Logic und
Data Buses, Plenum, New York, 1978, pp. 55-76.

162. Reiter, R., On Structuring a First-Order Database, in: Proceedings of the Second
Canadian Society for Computer Science National Conference, July 1978.

163. Reiter, R., A Logic for Default Reasoning, Artzjiciul Intelligence 13(1 and 2):81-132
(Apr. 1980).

164. Reiter, R., Circumscription Implies Predicate Completion (Sometimes), in: Proceedings
of the American Association for ArttjiciuI Intelligence National Conference, Pittsburgh,
1982, pp. 418-420.

165. Reiter, R., Towards a Logical Reconstruction of Relational Database Theory, in: M. L.
Brodie, J. L. Mylopoulos, and J. W. Schmit (eds.), On Conceptual Modeliing, Springer,
New York, 1984, pp. 163-189.

166. Reiter, R., A Theory of Diagnosis from First Principles, Technical Report 187/86,
Univ. of Toronto, 1986.

167. Reiter, R., A Sound and Sometimes Complete Query Evaluation Algorithm for Rela-
tional Databases with Null Values, J. Assoc. Comput. Much. 33(2):349-370 (Apr.
1986).

168. Reiter, R., Nonmonotonic Reasoning, Ann. Rev. Comput. Sci., to appear.

169. Rieger, C., Bane, J., and Trigg, R., ZMOB: A Highly Parallel Multiprocessor, Tech. Rep.
911, Univ. of Maryland, College Park, 1980.

170. Robinson, J. A., A Machine-Oriented Logic Based on the Resolution Principle, J.
Assoc. Comput. Much. 12, No. 1 (Jan. 1965).

171. Roussel, P., PROLOG: Manuel de Reference et d’Utilisution, Group d’Intelhgence
Artificielle, Marseille, 1975.

172. Sagiv, Y., Optimizing Datalog Programs, in: Proceedings of the Workshop on Foundations
of Deductive Databases and Logic Programming, Washington, 18-22 Aug. 1986, pp.
136-162.

173. Salton, G., Automated Language Processing, in: C. A. Cuadra (ed.), Annual Review of
Information Science and Technology, Chicago, 1968, pp. 169-199.

174. Savitt, D. A., Love, H. H., and Troop, R. E., Association Storing Processor, Tech. Rep.
RADC-Tech. Rep.-67-258, Vol. II, Final Report, AD 818530, Defense Documentation
Center, Fullerton, Cahf., June 1967.

175. Savitt, D. A., Love, H. H., and Troop, R. E., ASP: A New Concept In Language and
Machine Organization, in: 1967 Spring Joint Computer Conference, 1967, pp. 87-102.

176. Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G.,
Access Path Election in a Relational Database Management System, in: Proceedings of
the ACM-SIGMOD International Conference on Management of Data, New York, 30
May-l June 1979, pp. 23-34.

177. Sellis, T., Optimization of Extended Relational Database Systems, Ph.D. Thesis, Mem-
orandum UCB/Electronics Research Lab. M86/58, Univ. of California at Berkeley,
July 1986.

178. Sellis, T., Global Query Optimization, in: Proceedings of the 1986 ACM-SIGMOD
International Conference on Management of Data, Washington, May 1986.

179. Shepherdson, J. C., Negation as Finite Failure: A Comparison of Clark’s Completed
Data Base and Reiter’s Closed World Assumption, J. Logic Programming 1(15):51-79
(June 1984).

180. Shepherdson, J. C., Negation in Logic Programming, in: J. Minker (ed.), Foundations of
Deductive Databases and Logic Programming, Morgan-Kaufman, 1987.

60 JACK MINKER

181.

182.

183.

184.

185.

186.

Simmons, R. F., Answering English Questions by Computer: A Survey, Comm. ACM
8(1):53-70 (Jan. 1965).

Simmons, R. F., Automated Language Processing, in: C. A. Cuadra (ed.), Annual
Review Series, Interscience, New York, 1966, pp. 137-169.

Simmons, R. F., Natural Language Question-Answering Systems: 1969, Comm. ACM
13(1):15-30 (Jan. 1970).

187.

188.

189.

190.

191.

192.

Sterling, L. CS84-17, Weizmann Inst. of Science, Israel, 1984.

Sterling, L. and Latle, M., An Explanation Shell for Expert Systems, Technical Report
125-85, Center for Automation and Intelligent Systems Research, Cleveland, 1985.

Sterling, L., Meta-interpreters: The Flavors of Logic Programing, in: J. Minker (ed.),
Proceedings of the Workshop on Foundations of Deductive Databases and Logic Program-
ming, Washington, 18-22 Aug. 1986, pp. 163-175.

Thorn, J. A., Naish, L., and Ramamohanarao, K., A Superjoin Algorithm for Deductive
Databases, in: J. Minker (ed.), Proceedings of the Workshop on Foundations of Deductive
Databases and Logic Programming, Washington, 18-22 Aug. 1986, pp. 118-135.

Topor, R. and Sonenberg, E. A., On Domain Independent Databases, in: J. Minker
(ed.), Proceedings of the Workshop on Foundations of Deductive Databases and Logic
Programming, Washington, 18-22 Aug. 1986, pp. 403-419.

Ullman, J. D., Implementation of Logical Query Languages for Databases, ACM Trans.
Database Systems 10(3):289-321 (Sept. 1985).

Ullman, J. D., Database Theory-Past and Future, in: Proceedings on the Principles of
Database Theov, 23-25 Mar. 1987.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

van Emden, M. H. and Kowalski, R. A., The Semantics of Predicate Logic as a
Programming Language, J. Assoc. Comput. Mach. 23~733-742 (1976).
Van Gelder, A., Negation as Failure Using Tight Derivations for General Logic
Programs, in: J. Minker (ed.), Proceedings of the Workshop on Foundations of Deductive
Databases and Logic Programming, Washington, 18-22 Aug. 1986, pp. 712-732.

VanderBrug, G. and Minker, J. State-Space, Problem-Reduction and Theorem Proving
-Some Relationships, Comm. ACM 18(2):107-115 (1975).

Vardi, M. Y., The Decision Problem for Database Dependencies, Inform. Process. Lett.
12(5):251-254 (1981).
Vardi, M. Y., On Epistemic Logic and Logical Omniscience, in: Proceedings on the
Theoretical Aspects of Reasoning about Knowledge, 1986, pp. 293-305.

Warren, D. H. D., Implementing PROLOG, Res. Rep. 39,40, Univ. of Edinburgh, 1977.

Warren, D. H. D., Pereira, L. M., and Pereira, F., PROLOG-The Language and its
Implementation Compared with LISP, SZGART Newsletter, Aug. 1977, pp. 109-115.

Warren, D. H. D., Efficient Processing of Interactive Relational Database Queries
Expressed in Logic, in: Proceedings of the 7th International Conference on Very Large
Data Bases, New York, 9-11 Sept. 1981, pp. 272-281.

Wilson, G. A. and Minker, J., Resolution, Refinements and Search Strategies-A
Comparative Study, Tech. Rep. 470, Univ. of Maryland, 1976.

Wilson, G. A. and Minker, J., Resolution Refinements and Search Strategies-A
Comparative Study, IEEE Trans. Comput. C-25(8):782-800 (Aug. 1976).

Wilson, G. A. and Minker, J., A Note on Answer Extraction in Resolution Based
Systems, Znternat. J. Comput. Inform. Sci. 6(3):179-192 (1977).
Wos, L. T., Robinson, G. A., Carson, D. F., and Shalla, L., The Concept of De-
modulation in Theorem Proving, J. Assoc. Comput. Mach. 11:698-709 (1964).
Wos, L. T., Unpublished notes, approximately 1965.

Wos, L. T., Carson, D. F., and Robinson, G. A., Efficiency and Completeness of the Set
of Support Strategy in Theorem Proving, J. Assoc. Comput. Mach. 12:687-697 (1965).
Yahya, A. and Henschen, L. J., Deduction in non-Horn Databases, J. Automated
Reasoning 1:141-160 (1985).

