5 research outputs found

    Integration of Antenna Array with Multicrystalline Silicon Solar Cell

    Get PDF
    The integration of a low-profile antenna array with a multicrystalline silicon solar cell capable of powering a low-power wireless sensor at 2.45 GHz is reported. Lattice bus bars on the cell are exploited to minimize antenna shadows from low-profile antennas and transmission lines for a higher output power. The dual inverted-F array improves gain, and beam switching enables the array to sweep a wider coverage angle with larger beamwidths compared to other solar integrated antennas

    Integration of Antenna Array With Multicrystalline Silicon Solar Cell

    Get PDF
    The integration of a low-profile antenna array with a multicrystalline silicon solar cell capable of powering a low-power wireless sensor at 2.45 GHz is reported. Lattice bus bars on the cell are exploited to minimize antenna shadows from low-profile antennas and transmission lines for a higher output power. The dual inverted-F array improves gain, and beam switching enables the array to sweep a wider coverage angle with larger beamwidths compared to other solar integrated antennas

    Integration of Antennas and Solar cells for Low Power Wireless Systems

    Get PDF
    This thesis reports on design methods for enhanced integration of low-profile antennas for short-range wireless communications with solar voltaic systems. The need to transform to more sustainable energy sources arises from the excessive production of harmful carbon emissions from fossil fuels. The Internet of Things and the proliferation of battery powered devices makes energy harvesting from the environment more desirable in order to reduce dependency on the power grid and running costs. While photovoltaic powering is opportune due to immense levels of available solar power, the separate area requirements for the antenna and the photovoltaic surfaces presents an opportunity to significantly minimize the unit volume and to enable portable deployment. The focus is on issues of integrating antennas and transmission lines above crystalline silicon solar cells, in particular, the relative orientations are complicated by a-symmetric lattice of the solar cell. A solution to minimise orientation sensitivity was provided and utilised to successfully isolate a microstrip transmission line from the solar lattice, thereby allowing four antenna configurations to be demonstrated. Further work on crystalline solar cells demonstrated their use alongside circularly polarised antennas for aerial vehicles. Wireless energy harvesting over a wide frequency range was demonstrated with an a-Si solar Vivaldi antenna. A dye-sensitised solar dipole antenna was developed for low power indoor applications. The approaches established the engineering capacity to reduce the device size and weight through integration of the radio and the solar cell technologies. In addition, the use of different solar cell technologies demonstrated the importance of selecting the cell type most suited to the intended application

    A solar parabolic reflector antenna design for digital satellite communication systems

    No full text
    This paper introduces a compact solar parabolic reflector antenna design, with an effective DC solar performance and high gain / pencil beam antenna radiation characteristics, as an alternative to the standalone use of home-based autonomous solar panels and digital satellite antennas. The proposed solar reflector antenna consists of 2 parabolic shaped silicon solar panels with a diameter of 60 cm, each constructed by connecting individual silicon solar cells electrically in appropriate angles in order to create an approximate parabolic surface. The solar panels within the design have been connected in parallel in order to increase the total DC output level for medium and high current appliances. The bottom DC contact layer of the first silicon solar panel, which collects the DC current generated by the electrically connected solar cells within the panel as a result of the photovoltaic effect, also works as a parabolic reflector antenna with an average gain of 32.8 dB at the digital satellite downlink frequency band of 10.70 - 12.75 GHz, allocated by the ITU to the Region 1, including Europe

    Design and development of dual-Polarised photovoltaic solar antennae for Ku-band SatComsp.

    Get PDF
    The aim of this thesis is to review the state-of-the-art of transparent patch antennae and to develop design techniques for the experimental development of dual-band, dual-polarised compact transparent patch antennae integrated with solar cells for Ku-band satellite applications. It can be specifically used for Fixed-Satellite-Services (FSS) operating over the frequency range from 11.7 GHz to 12.22 GHz (downlink) and 14.0 GHz to 14.5 GHz (uplink) bands. The research reported in this thesis demonstrated a suspended meshed patch antennae serves as a basic building-block element for a Ku-band dual-polarised transparent array antennae for long distance communications. The results are shown that the use of a suspended patch above a printed radiating patch and ground plane (all transparent) provides dual-band operation for the uplink and downlink. In this work, firstly, a compact low-profile linearly polarised meshed element has been designed, and simulated in CST Microwave Studio electromagnetic simulation software. The photovoltaic antennae element was then fabricated and measured. The comparison between the experimental results and simulation by CST demonstrates good agreement between predicted and practical measurements. The developed antennae element achieved the overall broad bandwidth of more than 1GHz (500 MHz in each of the uplink and downlink bands), and the nominal element gain is 6.055 dBi (downlink) and 7.61 dBi (uplink). A good compromise between the RF performance and the transparency is also obtained with optical transparency of 84% and negligible degradation of the RF performance. The design is then extended to develop a Ku-band photovoltaic antennae element for dualpolarised operation This element could be used for frequency re-use in Ku-band satellite downlink and uplink communicationsin order to double capacity. In addition, the simulation of a 2 x2 sub-array of dual polarised transparent antennae elements (using the experimentally measured performance of the single dual-polarised element) is presented. It has yielded a narrow beam with increased gain of 13 dBi and a cross-polar discrimination of greater than 30 dB is demonstrated, which is a requirement for frequency re-use operation. Hence, the dual-polarised 4-element sub-array described herein could be utilised as the primary building block for a 2D SatCom phased array antennae. In order to meet the full requirements of Kuband SatCom communications employing frequency re-use which essentially doubles the achievable capacity, i.e. two data channels can use the same frequency bands simultaneously using the two orthogonal polarisations with high cross-polar isolation. Using these new designs providing new knowledge in the field of photovoltaic communication antennae at high frequencies, and bridge the associated drawbacks with the current PV antennae
    corecore