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Abstract 

This thesis reports on design methods for enhanced integration of low-profile 

antennas for short-range wireless communications with solar voltaic systems. The need to 

transform to more sustainable energy sources arises from the excessive production of harmful 

carbon emissions from fossil fuels. The Internet of Things and the proliferation of battery 

powered devices makes energy harvesting from the environment more desirable in order to 

reduce dependency on the power grid and running costs. 

While photovoltaic powering is opportune due to immense levels of available solar 

power, the separate area requirements for the antenna and the photovoltaic surfaces presents 

an opportunity to significantly minimize the unit volume and to enable portable deployment. 

The focus is on issues of integrating antennas and transmission lines above crystalline 

silicon solar cells, in particular, the relative orientations are complicated by a-symmetric 

lattice of the solar cell. A solution to minimise orientation sensitivity was provided and 

utilised to successfully isolate a microstrip transmission line from the solar lattice, thereby 

allowing four antenna configurations to be demonstrated. Further work on crystalline solar 

cells demonstrated their use alongside circularly polarised antennas for aerial vehicles. 

Wireless energy harvesting over a wide frequency range was demonstrated with an a-Si solar 

Vivaldi antenna. A dye-sensitised solar dipole antenna was developed for low power indoor 

applications. 

The approaches established the engineering capacity to reduce the device size and 

weight through integration of the radio and the solar cell technologies. In addition, the use of 

different solar cell technologies demonstrated the importance of selecting the cell type most 

suited to the intended application. 

  



iii 

 

Declaration 

 

I certify that this thesis which I now submit for examination for the award of PhD, is 

entirely my own work and has not been taken from the work of others, save and to the extent 

that such work has been cited and acknowledged within the text of my work.  

This thesis was prepared according to the regulations for postgraduate study by 

research of the Dublin Institute of Technology and has not been submitted in whole or in part 

for another award in any other third level institution.  

The work reported on in this thesis conforms to the principles and requirements of the 

DIT's guidelines for ethics in research.  

DIT has permission to keep, lend or copy this thesis in whole or in part, on condition 

that any such use of the material of the thesis be duly acknowledged.  

 

Signature __________________________________ Date _______________  

Oisin O’Conchubhair 

  



iv 

 

Acknowledgements 

I would like to thank my supervisors Professor Max Ammann and Dr Pádraig 

McEvoy for the opportunity to join the research group in the Antenna & High Frequency 

Research Centre (AHFR) and for all the advice and support they have given me over the past 

four years. 

I would like to thank all my colleagues in the AHFR, Giuseppe, Matthias, Afshin and 

Abraham for their help and friendship over the years. In particular, Antoine, Vit and 

Domenico for being my closest sources of knowledge and for always being willing to answer 

my questions. Adam and Xiulong for their advice regarding circularly-polarized antennas and 

phase-shifting power splitter design and Kansheng for his help designing energy harvesting 

circuitry. 

I would like to thank my parents, Eugene and Siobhan, my sister Niamh-Erin and my 

girlfriend Lisa for their support and encouragement throughout this journey (even though 

they still can’t explain what I do). 

Finally I would like to thank the Telecommunication Graduate Initiative which 

organised the financial support and provided invaluable courses to expand my knowledge of 

the field as I progressed through my studies. 

 

  



v 

 

Nomenclature 

εr 

σ 

Ω 

V 

A 

W 

K 

F 

H 

S11 

S21 

Hz 

dB 

dBi 

Relative dielectric constant of a dielectric material 

Conductivity of a material 

Electrical Resistance 

Voltage 

Amperage 

Wattage 

Kelvin 

Farad (Capacitance) 

Henry (Inductance) 

Input Reflection Coefficient in the Scattering Matrix 

Transmission Coefficient in the Scattering Matrix 

Hertz 

Decibels 

dB Isotropic 

 

 

  



vi 

 

Abbreviations 

RF 

UWB 

IFA 

PIFA 

PV 

a-Si 

a-Si:h 

c-Si 

DSS 

ITO 

TiO2 

CP 

Voc 

Isc 

PCB 

MCU 

UAV 

GSM 

WLAN 

GPS 

CST 

IEEE 

Radio Frequency 

Ultra-Wideband 

Inverted-F Antenna 

Planar Inverted-F Antenna 

Photovoltaic 

Amorphous Silicon 

Hydrogenated Amorphous Silicon 

Crystalline Silicon 

Dye Sensitised Solar 

Indium Tin Oxide 

Titanium Dioxide 

Circularly-Polarized 

Open Circuit Voltage 

Short Circuit Current 

Printed Circuit Board 

Microcontroller Unit 

Unmanned Aerial Vehicle 

Global System for Mobile Communications 

Wireless Local Area Network 

Global Positioning System 

Computer Simulation Technology GmbH 

Institute of Electrical and Electronics Engineers 

 

 

  



vii 

 

CONTENTS 
 

Abstract ii 

Declaration iii 

Acknowledgements iv 

Nomenclature v 

Abbreviations vi 

List of Figures xi 

List of Tables xvi 

1 Introduction 1 

1.1 Background in Solar Cell Technology 2 

1.1.1 Monocrystalline and Polycrystalline Silicon Solar Cells 3 

1.1.2 Amorphous Silicon Solar Cells 4 

1.1.3 Dye-Sensitised Solar Cells 5 

1.1.4 Efficiencies 6 

1.2 Antenna Fundamentals 8 

1.2.1 Impedance Matching 8 

1.2.2 Importance of Wide Beamwidths 9 

1.3 Wireless Devices and Solar Cells 10 

1.4 Previous Approaches to Solar Integrated Antennas 11 

1.4.1 Co-Siting of Antennas and Solar Cells 11 

1.4.2 Solar Cells Providing Ancillary Support to Antennas 13 



viii 

 

1.4.3 Solar Cells Functioning as Radiating Elements 14 

1.4.4 Solar Cells Functioning as a Ground Plane 15 

1.4.5 Fully Solar Integrated Antenna 16 

1.4.6 Conclusions from Previous Approaches 18 

1.5 Applications which can benefit from Solar Antenna Integration 19 

1.6 Thesis Outline and Novelty 20 

2 Interaction with the Solar Lattice 22 

2.1 Transmission Lines and the Solar Lattice 24 

2.2 Antennas and the Solar Lattice 30 

2.3 Complete System 33 

2.4 Conclusion 34 

3 Multicrystalline Solar Cell as Ground Plane for IFA 36 

3.1 Transmission Line Design 37 

3.2 Antenna Design 38 

3.3 Centrally located IFA 39 

3.4 Offset above bus bar 42 

3.5 Dual IFA Array 44 

3.6 Beam Switching 47 

3.7 Solar Shadowing 48 

3.8 Application: Greenhouse Sensor 52 

3.9 Conclusion 54 



ix 

 

4 Multicrystalline Silicon Solar Panel as Ground Plane for CP Antenna 55 

4.1 Proposed Antenna Configurations 56 

4.2 Feed Network Design 57 

4.3 Antenna Performance 58 

4.4 Polarization Reconfigurability 61 

4.5 Beam Switching 63 

4.6 Application: Weather Balloon 65 

4.7 Conclusion 67 

5 Amorphous Silicon Solar Vivaldi 68 

5.1 Antenna Configuration 69 

5.2 Solar Performance 70 

5.3 Antenna Performance 72 

5.4 Energy Scavenging Potential 75 

5.5 Ideal Solar Vivaldi 76 

5.6 Application: Building Sun Shade Integration 83 

5.7 Conclusions 84 

6 Dye-Sensitised Solar Dipole 86 

6.1 Dye-Sensitised Solar Cell Manufacture 88 

6.2 Antenna Configuration 89 

6.3 Solar Performance 90 

6.4 Antenna Performance 91 



x 

 

6.5 Application: Wireless Keyboard 96 

6.6 Conclusions 98 

7 Conclusions and Future Work 99 

7.1 Future Work 102 

8 References 104 

Appendix A. List of Publications 115 

Journal Publications 115 

International Conference Publications 115 

National Colloquia 115 

  



xi 

 

List of Figures 

Fig. 1.1 Mono and Polycrystalline Silicon Solar Cell Production 4 

Fig. 1.2 Amorphous Silicon Solar Cell Production Process 5 

Fig. 1.3 Architectural use of Dye-Sensitised Solar Cells 6 

Fig. 1.4 Improvements in Solar Cell Efficiencies 7 

Fig. 1.5 Solar Antenna Orientation 9 

Fig. 1.6 Solar Antenna Tilt Angle 10 

Fig. 1.7 CPW IFA with a-Si Panel 12 

Fig. 1.8 CP Patch Antenna 12 

Fig. 1.9 Slot Antenna for Space Applications 13 

Fig. 1.10 Quad Slot Antenna 13 

Fig. 1.11 c-Si Reflector 14 

Fig. 1.12 a-Si Parabolic Reflector 14 

Fig. 1.13 Meshed Patch Antennas 14 

Fig. 1.14 Solar Parasitic Element 14 

Fig. 1.15 Solar Cell Radiator 15 

Fig. 1.16 a-Si Monopole Antenna 15 

Fig. 1.17 Solar Patch Antenna 16 

Fig. 1.18 Meshed Patch Antenna 16 

Fig. 1.19 EWT Dipole Antenna 17 

Fig. 1.20 a-Si Dipole Antenna 17 

Fig. 1.21 Dual Band a-Si Slot 18 

Fig. 1.22 a-Si Dipole and Loop 18 

Fig. 1.23 Custom a-Si Slot 18 

Fig. 2.1 Exploded view of FR-4 Solar Cell Substitute 23 



xii 

 

Fig. 2.2 Antenna Orientations 24 

Fig. 2.3 Coplanar Waveguide Dimensions 25 

Fig. 2.4 Impedance Variation between Configurations (a) and (b) 25 

Fig. 2.5 Parallel Current Density Plots 26 

Fig. 2.6 Impedance Variation between Configurations (a) and (c) 27 

Fig. 2.7 Perpendicular Current Density Plots 28 

Fig. 2.8 Impedance Variation between Configurations (a) and (d) 28 

Fig. 2.9 Simulated Transmission Coefficient 29 

Fig. 2.10 Current Flow on Lattice of 66.5 × 133 mm Substitute Cell 30 

Fig. 2.11 Antenna Configuration 31 

Fig. 2.12 No Transmission Line S11 Results 31 

Fig. 2.13 Variation in Antenna Input Impedance 32 

Fig. 2.14 Antenna Dimensions 33 

Fig. 2.15 Complete System S11 Results 34 

Fig. 3.1 Transmission Line Configuration 37 

Fig. 3.2 Effect of Grounding Strip on Impedance 38 

Fig. 3.3 Printed Inverted-F Antenna Dimensions 39 

Fig. 3.4 Centrally Positioned Antenna in Perpendicular Configuration 40 

Fig. 3.5 Measured and simulated S11 for the parallel and perpendicular antenna 41 

Fig. 3.6 Radiation Patterns for YZ Plane (Left) and XZ Plane (Right) 41 

Fig. 3.7 Offset IFA Configuration 42 

Fig. 3.8 Measured and Simulated S11 for the Offset Antenna 43 

Fig. 3.9 Radiation Patterns for YZ Plane (Left) and XZ Plane (Right) 43 

Fig. 3.10 Dual Antenna Configuration 44 

Fig. 3.11 Measured Dual Antenna Coupling 44 



xiii 

 

Fig. 3.12 Microstrip Power Divider Configuration 45 

Fig. 3.13 Radiation Pattern for XZ Plane (Left) and YZ Plane (Right) 45 

Fig. 3.14 Dual Antenna S11 for Different Insolation Levels 46 

Fig. 3.15 Branchline Coupler Configuration 47 

Fig. 3.16 XZ plane (left) and YZ plane (right) for Array Phase Offset (Δφ) 48 

Fig. 3.17 Measured Solar Output at Various Incident Angles 49 

Fig. 3.18 Reduction in Solar Capture Area due to Oblique Incident Angles 51 

Fig. 3.19 Thanet Earth Industrial Greenhouse 52 

Fig. 3.20 Proposed Wireless Sensor Configuration 52 

Fig. 4.1 CP solar antenna configuration 57 

Fig. 4.2 Printed inverted-f antenna parameters 57 

Fig. 4.3 Measured and simulated reflection coefficient for each antenna 59 

Fig. 4.4 Measured and simulated transmission coefficient between antennas 59 

Fig. 4.5 Measured and simulated axial ratio 60 

Fig. 4.6 CP Gain XZ (left) and YZ (right) 60 

Fig. 4.7 Ground plane currents in LHCP (Left) and RHCP (Right) 61 

Fig. 4.8 Linear Polarization Radiation Patterns 62 

Fig. 4.9 45° Slanted Radiation Patterns 62 

Fig. 4.10 Linear Polarization Beam Switching Radiation Patterns 63 

Fig. 4.11 Linear Polarization E-Field Plots 64 

Fig. 4.12 Circular-Polarization Beam Switching Radiation Patterns 64 

Fig. 4.13 Circular-Polarization Beam Switching Axial Ratio 65 

Fig. 4.14 Communication between Aerial Nodes and Ground Based Users 66 

Fig. 4.15 CP Antenna Integrated with Aerial Node 66 

Fig. 5.1 Solar Vivaldi antenna (left) and rear-side transmission line (right) 69 



xiv 

 

Fig. 5.2 Sections removed from solar cell 71 

Fig. 5.3 Solar performance results 72 

Fig. 5.4 Measured and Simulated S11 72 

Fig. 5.5 Measured Boresight Gain 73 

Fig. 5.6 Antenna Surface Currents for Solar (Left) and Copper (Right) 73 

Fig. 5.7 Vivaldi Antenna S11 for Different Insolation Levels 74 

Fig. 5.8 Solar Vivaldi Radiation pattern at 950 MHz 74 

Fig. 5.9 Solar Vivaldi Radiation pattern at 1.87 GHz 75 

Fig. 5.10 Solar Vivaldi Radiation pattern at 2.45 GHz 75 

Fig. 5.11 Villard Cascade Voltage Multiplier Circuit 76 

Fig. 5.12 CST Model of Idealised Solar Vivaldi 77 

Fig. 5.13 Idealised Solar Vivaldi S11 Results 78 

Fig. 5.14 Idealised Solar Vivaldi Surface Currents 78 

Fig. 5.15 Solar Vivaldi Array Configuration 1 79 

Fig. 5.16 Solar Vivaldi Array Configuration 1 S11 79 

Fig. 5.17 Solar Array Configuration 1Radiation pattern at 950 MHz 80 

Fig. 5.18 Solar Array Configuration 1Radiation pattern at 1.87 GHz 80 

Fig. 5.19 Solar Array Configuration 1Radiation pattern at 2.45 GHz 80 

Fig. 5.20 Solar Vivaldi Array Configuration 2 81 

Fig. 5.21 Solar Vivaldi Array Configuration 2 S11 81 

Fig. 5.22 Solar Array Configuration 1Radiation pattern at 950 MHz 82 

Fig. 5.23 Solar Array Configuration 1Radiation pattern at 1.87 GHz 82 

Fig. 5.24 Solar Array Configuration 1Radiation pattern at 2.45 GHz 82 

Fig. 5.25 Sun Shades incorporating c-Si Solar Cells 83 

Fig. 5.26 Concept of Installing a-Si Solar Cells on Existing Louvered Facades 83 



xv 

 

Fig. 6.1 Rear of dye-Sensitised Solar Dipole Antenna 87 

Fig. 6.2 Dye-Sensitised Solar Cell Structure 88 

Fig. 6.3 TiO2 Layer Preparation 88 

Fig. 6.4 Sensitising of TiO2 Layer 88 

Fig. 6.5 Adding the Carbon Layer 89 

Fig. 6.6 Copper Balun Structure 89 

Fig. 6.7 Measured and Simulated S11 Results 91 

Fig. 6.8 Prototype Dipole Reflection Coefficient Variation 93 

Fig. 6.9 Current Flow on Full Solar Antenna 94 

Fig. 6.10 DS-Cell Dipole S11 for Different Insolation Levels 95 

Fig. 6.11 Radiation Pattern XY (left) and YZ (right) 96 

Fig. 6.12 Bow Tie Dipole in Wireless Keyboard S11 96 

Fig. 6.13 Solar Bow Tie Dipole in Wireless Keyboard 97 

Fig. 6.14 Keyboard Dipole Radiation Pattern XY (left) and YZ (right) 97 

  



xvi 

 

List of Tables 

Table 1.1 Solar Cell Efficiency Records 8 

Table 3.1 Central Antenna Orientation Results 40 

Table 3.2 Measured Dual Antenna Position Results 46 

Table 3.3 Voc and Isc Results 49 

Table 4.1 Individual Antenna Results 58 

Table 4.2 Antenna Radiation Results at 2.45 GHz 61 

Table 5.1 Simulated Microstrip-to-slotline transition results 70 

Table 5.2 Vivaldi Antenna Performance 72 

Table 5.3 Measured DC Output for Different Signal Generator Powers 76 

Table 5.4 Ideal Antenna Performance 78 

Table 6.1 Solar Cell Material Properties 90 

Table 6.2 Measured Solar Cell Results 90 

Table 6.3 Measured and Simulated Antenna Performance 91 

Table 6.4 Measured Solar Cell Results 92 



1 

 

1 INTRODUCTION 

Exhaustion of fossil fuels and rising concerns over harmful emissions are resulting in 

a shift away from carbon based fuels to more sustainable energy sources. In terms of global 

power generation there has been increasing investment in large scale wind, solar and hydro 

generation however fossil fuel consumption and production are important elements of many 

economies globally [1]. As a result, it will take a long time for electricity generated from 

fossil fuels to disappear. 

 Development in renewable technologies is more apparent in transportation with 

advancements such as the first flight around the planet by a solar powered aircraft [2]. 

Commercial flights using fully electric aircraft will take much more development, the first 

step, replacing mechanical, hydraulic and pneumatic systems with electric alternatives, is 

being investigated with the aim to improve efficiency [3]. There is a growing interest in 

unmanned aerial vehicles (UAVs), reduced maintenance costs and greater range is resulting 

in research into solar power UAVs [4]. Energy recovery is a common method of reducing 

vehicle running costs, the Komatsu PC200-8 hybrid excavator uses inertial energy recovery 

to charge a capacitor with energy that would otherwise be wasted [5].  

On a smaller scale there is increased interest in low power wireless devices for the 

Internet of Things concept and on body devices. In many wireless communication 

applications access to a power grid may not be feasible due to remote location or the need for 

mobility in a product. It is therefore desirable to design devices which can harvest energy 

from their environment reducing load on the power grid and reducing running costs. It is 

shown in [6] that many sources of energy have been investigated such as ambient light, 

ambient airflow, thermoelectric and mechanical recovery methods. Consumer oriented 

products have a relatively short lifespan which means there is a greater possibility for 
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sustainable technology to enter this market quickly. Additionally longer battery lives would 

make a product more attractive in the current market which is also an incentive for 

development. 

Our sun is a G-type main-sequence star which is capable of producing temperatures in 

the region of 5,300 to 6,000 K [7]. The immense temperature coupled with the huge pressure 

at the core results in the fusion of approximately 600 million tons of hydrogen atoms into 

helium atoms every second. The fusion of 4 hydrogen protons to create 1 helium proton 

produces 3.846 × 10
26

 W of power making the sun the largest source of energy in our solar 

system [8]. 

Hence the use of wireless communications powered from photovoltaic sources is 

attractive. The disadvantage of this concept is the greater demand for the surface area 

required to mount both conventional photovoltaic systems and antenna systems separately. 

The focus of this thesis is to integrate these systems to minimize the unit volume and to 

enable portable deployment. 

The first section of this chapter will introduce the solar cell technologies which will 

be integrated with the antennas in this thesis. The second section will discuss some of the 

important aspects of solar antenna design. The third section will discuss works which 

optimised the use of solar cells alongside wireless systems. The third section will discuss 

previous attempts at integrating antennas with solar cells. The fourth section will discuss 

possible applications for solar integrated antennas. The final section will give an outline of 

the thesis. 

1.1 Background in Solar Cell Technology 

Since the creation of the first functional crystalline silicon solar cell by researchers at 

Bell labs in 1954 there has been much advancement in solar technology to improve 
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efficiency, cost or environmental resistance [9]. This section will discuss the manufacture and 

function of the solar cell types which are integrated with antennas in this thesis. 

1.1.1 Monocrystalline and Polycrystalline Silicon Solar Cells 

Crystalline silicon solar cells are the most common type of solar cell, regularly used 

in high power generation application such as home solar power generation. These cells are 

made from thin brittle semiconductor wafers which require a strong frame and protective 

glass to protect them from the environment. 

Mono and Poly or Multicrystalline silicon solar cells originate from the same 

polycrystalline silicon material however the production process for polycrystalline cells is 

cheaper resulting in more impurities and lower efficiency. The differences in the production 

process are shown in Fig. 1.1.  

Crystalline silicon solar cells consist of the silicon wafer sandwiched between an 

anode front contact and a cathode rear contact. In most cases the cathode is a solid sheet of 

conductive material and the anode is made up of a number of electrodes designed to 

maximise the level of insolation into the semiconductor material while maximising the 

generated power output of the solar cell.  

The semiconductor material usual consists of multiple doped regions of 

semiconductor material which have been positively or negatively doped. When combined the 

electrons in these layers adjust to a state equilibrium until photons from sunlight entering the 

material distort the equilibrium causing the electrons to flow through the external circuit to 

equalise the layers once more. In this way electricity is produced by the solar cell. In the 

event that a photon is not absorbed by the material it will be released in the form of heat, this 

rise in temperature changes the properties of the semiconductor material which usually 

reduces the efficiency of the solar cell. 
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Fig. 1.1 Mono and Polycrystalline Silicon Solar Cell Production 

Power outputs are usually greater than 3 W for a single c-Si cell however output 

voltages between 0.5 and 0.8 V require additional voltage boosting circuitry for applications 

requiring a small device size. 

1.1.2 Amorphous Silicon Solar Cells 

A-Si cells are a lower cost, flexible alternative to crystalline silicon solar cells due the 

layering technique used in their production, shown in Fig. 1.2.  
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Fig. 1.2 Amorphous Silicon Solar Cell Production Process [10] 

The metallic surfaces are sputtered and then laser etched to form the front electrodes 

and rear contacts. Vapour deposition is used to create the semiconductor layer. Impurities 

absorbed during deposition reduce the solar cell efficiency [11]. The lower temperatures 

required for deposition means that the a-Si can be layered on a wider range of substrates 

including glass.  

It is common for thin film a-Si solar cells to be configured as solar panels and sealed 

in a flexible plastic encapsulant. The panels are designed to be cut along the intersection 

between cells to achieve the required power output and as a result can easily be trimmed to fit 

a desired shape.  

Outputs of 3 V (~ 66 mW) or greater simplifies design of the associated circuitry but 

solar efficiencies are typically limited to ~10%. 

1.1.3 Dye-Sensitised Solar Cells 

Dye-sensitised solar cells are usually manufactured between two layers of transparent 

conductive substrate allowing light absorption from both sides of the cell. A carbon cathode 

is deposited on one substrate, a layer of TiO2 is deposited on the opposite substrate and an 
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electrolyte fills the gap between the substrates to enable charge transport. In order for the 

TiO2 to absorb photons it must first be sensitised to part of the solar spectrum using a dye, the 

colour of the dye determines the wavelength absorbed. This feature of DS-cells has given 

them a place in architectural design, despite having considerably lower efficiencies than c-Si, 

the DSSCs are more aesthetically pleasing as shown in Fig. 1.3.  

 
Fig. 1.3 Architectural use of Dye-Sensitised Solar Cells [12] 

Wider acceptance angles and better absorption capacity for diffuse sunlight and 

fluorescent light make DSSCs better suited to indoor use than the c-Si alternatives [13].  

1.1.4 Efficiencies 

Solar cells are regularly compared based on their measured efficiency calculated 

using a directed light source producing 1000 W/m
2
, located at 90° to the solar cell. The 

standardised irradiance distribution used to test terrestrial solar cells simulates a 1.5 air mass 

spectrum to represent a yearly average for mid-latitudes. Improvements in solar cell 

efficiencies are shown in Fig. 1.4, triple junction cells employing multiple layers of 

semiconductor to absorb a wider range of the solar spectrum top the list followed by 

monocrystalline cells and polycrystalline cells.  

Solar cell efficiency records are broken regularly, independently verified efficiency 

values for different solar cell types have been recorded every 6 months in Progress in 

Photovoltaics since 1993 [14]. Current efficiency values published on the 16
th

 of June 2015 

are shown in Table 1.1.  
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Table 1.1 Solar Cell Efficiency Records [14] 

Solar Cell Type Efficiency Voc (V) Isc (mA/cm
2
) 

Five Junction 38.8% 4.77 9.6 

Monocrystalline Si 25.6% 0.74 41.8 

Polycrystalline Si 20.8% 0.66 39.0 

Amorphous Si 10.2% 0.90 16.4 

Dye Sensitised 11.9% 0.74 22.5 

 

It is clear that there is a sizeable efficiency gap between a-Si and c-Si solar cells 

however standard test conditions use a directed light source representing AM 1.5. In reality 

the average annual power generated by each technology covering the same surface area and 

oriented at the same angle could be much closer due to the lower sensitivity to spectrum and 

temperature change of a-Si cells [16]. 

1.2 Antenna Fundamentals  

The antenna structures used in this thesis were either chosen to minimise solar 

shadowing while improving performance compared to previous antenna integrations from the 

literature or to form a simple platform to analyse the use of novel solar cell material. The 

antennas and feed networks were designed to be printed on copper clad substrate using an 

LPKF ProtoMat C60 CNC milling machine. Nonplanar structures must be soldered together 

by hand which can lead to slight variation from the simulation model.  

1.2.1 Impedance Matching 

In order to maximise power transfer to a load, in this case the antenna, it is important 

to ensure that the load impedance Zi matches the source impedance Zo. All antennas in this 

thesis are designed to have a characteristic impedance of 50 Ω to match the Rhode & 

Schwarz Vector Network Analysers used in the AHFR.  

Energy will be reflected when the load impedance doesn’t match the source 

impedance. The reflection coefficient Γ is equal to the S11 parameter which describes the ratio 

between the power received at port 1 and power sent from port 1. 
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Γ = S11 =
𝑍𝑖 − 𝑍𝑜

𝑍𝑖 + 𝑍𝑜
 

When a perfect match is achieved, no power is reflected and the S11 = 0. The S11 is 

usually represented in decibels on a 2D plotted against frequency. Antenna bandwidth is 

usually taken as the frequency range over which the S11 is lower than -10 dB i.e. more than 

90% of the power is transferred to the load. It is important that solar antennas are tuned so 

that their bandwidth covers to the desired frequencies of operation to ensure efficient use of 

stored energy.  

1.2.2 Importance of Wide Beamwidths 

The electromagnetic field generated by an antenna is graphically represented in the 

antennas radiation pattern [17]. In this thesis the radiation pattern is expressed in term of gain 

relative to an isotropic antenna. The half-power beamwidth describes the angle between two 

points in plane cut through the radiation pattern main lobe which are 3 dB below the peak 

gain.  

Achieving a wide beamwidth is an important design goal for solar antennas because 

placement of a solar powered wireless device is restricted to angles which enable efficient 

solar generation. The cells need to face due south for locations in the northern hemisphere 

and vice versa for optimum generation, wide beamwidths enable wider RF coverage as 

shown in Fig. 1.5. 

 
Fig. 1.5 Solar Antenna Orientation 
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The tilt angle is dependent on latitude, a rule of thumb for fixed solar tilt angles is to 

set the tilt angle to the latitude plus 15°. A panel in Dublin should be set to a tilt angle of 68°, 

wide beamwidths again improve RF coverage as shown in Fig. 1.6.  

 
Fig. 1.6 Solar Antenna Tilt Angle 

1.3 Wireless Devices and Solar Cells 

Wireless sensors where the solar cells are separate from the wireless system have 

been widely used to date and much work has been carried out on optimising power 

generation and intelligently using stored energy. In [18] a photovoltaic power supply is 

developed to power a separate wireless light intensity sensor node. A power management 

system was developed to track the maximum power point of a small solar panel ensuring 

smooth charging of a super capacitor during varying light intensity conditions.  

Fast charging super capacitors are an essential component in small scale solar power 

generation in order to fully utilise the high currents produce by mono and polycrystalline 

silicon solar cells. While voltage boosting and battery charging circuitry has limited current 

handling capabilities, a super capacitor can quickly store as much power as possible during 

short periods of insolation.  

In [19] a system is developed to choose the most efficient route to transmit data 

between two nodes in a network. The system tracks the stored energy of each node which 

will vary depending on light intensity at each node location. It uses this data to select a route 
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through the nodes which have the most power ensuring that the entire system is active for 

longer.  

Most wireless systems currently rely on batteries for storage however these have 

substantial drawback in terms of charging losses, low charge/discharge cycle life, potential 

for overheat failure and substantial maintenance costs [20]. Intelligent power management 

coupled with reductions in MCU power requirements and super capacitor costs could remove 

the need for batteries in low power applications in the future.  

1.4 Previous Approaches to Solar Integrated Antennas 

Many attempts have been made to couple antennas and solar cells, integrations of 

antennas with solar cells usually take one of five forms,  

1.   The solar cell is simply positioned above a radiating element or ground plane with 

adequate space around the antenna to allow the antenna to radiate leaving unutilised 

surface space. 

2.   The solar cell provides ancillary support to a metallic antenna, for example used as a 

parabolic reflector. 

3.   The solar cell is used as the radiating element of an antenna and a metallic ground plane 

is provided to achieve radiation.  

4.   The solar cell is used as an RF ground for a metallic antenna. 

5.   Fully solar integrated antenna whereby the solar cell forms the radiating element and does 

not require additional metallisation to achieve radiation. 

1.4.1 Co-Siting of Antennas and Solar Cells 

The simplest form of solar integration co-locates the antenna and solar cell in an effort 

to minimise space i.e. the antenna is fully metallic with solar cells arranged in its vicinity. 

This minimises interaction by ensuring the two systems are functionally separate however 
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additional real estate is required as well as the additional cost of metallisation for the antenna 

and ground plane.  

The co-siting of a 920 MHz coplanar waveguide inverted-F antenna (IFA) with a-Si 

solar cells [21] demonstrated the isolation of the antenna and solar functions to avoid mutual 

interference. The antenna occupied 25% of the available solar footprint.  

Circularly-polarized antennas have been used alongside solar cells in space 

applications [22]. In this case circularly-polarized microstrip patch antennas operating at 

2.4 GHz were positioned in different locations on a mini spacecraft to determine the best 

configuration to ensure ground communication is maintained. These designs require separate 

surface areas for antennas and solar cells meaning that the satellite needs to be large. 

 
Fig. 1.7 CPW IFA with a-Si Panel [21] 

 
Fig. 1.8 CP Patch Antenna [22] 

To avoid additional footprint extensions, it becomes preferable to vertically integrate 

the antenna while minimizing any solar shadowing. A panel of cells was configured above a 

metallic slot antenna [23] which radiated through apertures that reduced the solar area by 

6.5% however this antenna had a 25 mm height. Similarly a solar cell was located above an 

11.5 mm high quad slot antenna achieving omnidirectional coverage with adequate spacing 

provided to allow radiation [24]. 
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Fig. 1.9 Slot Antenna for Space Applications [23] 

 
Fig. 1.10 Quad Slot Antenna [24] 

1.4.2 Solar Cells Providing Ancillary Support to Antennas 

Similar to co-locating the antenna and solar cell, providing ancillary support again 

minimises the interaction between the systems by functionally isolating the systems. In this 

configuration the antenna is metallic and would function without the solar cells, the cells are 

instead used to complement the antenna function e.g. a solar cell reflector focusing an 

antenna beam.  

A polycrystalline silicon solar cell has provided a ground plane for a microstrip 

transmission line and acted as a reflector for a copper dipole antenna [25]. It was found that 

the solar cell produced the same radiation pattern as a perfect electric conductor with only 

0.24 dBi gain decrease.  

A simulated parabolic reflector laminated with an unspecified solar cell type focused 

the beam of a 12 GHz horn antenna with only a 2.8 dB decrease in gain compared to a 

conventional reflector [26]. The antenna achieved a gain of 31.7 dB but a narrow 3° 

beamwidth would make it difficult to achieve an RF link while optimising for solar 

generation. 
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Fig. 1.11 c-Si Reflector [25] 

 
Fig. 1.12 a-Si Parabolic Reflector [26] 

Two linearly-polarized meshed patch antennas, with a 90º phase difference, sharing a 

single microstrip feed line used a solar panel as a substrate between the antenna and the 

conductive shielding of the satellite acting as a ground plane [27]. The patch antennas 

achieve circular-polarization with 5.15 dBi of gain at 2.47 GHz and a 70% mesh 

transparency.  

A solution with an 8 mm device height used a polycrystalline solar cell as a parasitic 

element above a PIFA [28] to achieve resonance in four bands with gain values from 2 –

 4 dBi. This ensured irradiation of the entire surface of the solar cell but requires considerable 

space for the metallic antenna and ground plane.  

 
Fig. 1.13 Meshed Patch Antennas [27] 

 
Fig. 1.14 Solar Parasitic Element [28] 

1.4.3 Solar Cells Functioning as Radiating Elements 

In this method the solar cell forms the radiating element of the antenna reducing the 

overall device weight and removing the antenna metallisation cost. However a metallic 

ground plane is still required to achieve radiation.  
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A GPS antenna envisaged for vehicular applications utilised four cells in a 

monocrystalline solar panel excited by an aperture coupled feed to achieve resonance without 

interfering with its DC operation [29]. This approach overcomes solar loss due to apertures 

and shadowing however the device had a total integrated height of 12 mm and required a 

large metallic ground plane. 

In [30], a Hydrogenated Amorphous Silicon (a-Si:H) solar cell constituted an ultra-

wideband monopole antenna with a bevelled copper feed for use as a wireless sensor. 

Simulated results showed the 2 - 10 GHz antenna had 0 - 3 dBi gain. The average power 

consumption by the sensor was 29 μW, which could be supported for more than 48 hours 

using a 500 mF storage capacitor. The sensor circuitry and feed network are designed into the 

RF ground minimising unnecessary metallisation. 

 
Fig. 1.15 Solar Cell Radiator [29] 

 
Fig. 1.16 a-Si Monopole Antenna [30] 

1.4.4 Solar Cells Functioning as a Ground Plane 

Further reduction in manufacturing costs can be achieved by using the solar cell as a 

ground plane and integrating a metallic radiating element at much lower expense. However 

antenna shadowing on the solar cell will negatively impact solar power output and the solar 

cell structure can make impedance matching difficult. 

A solution with a 2 mm integrated height used a patch antenna over a polycrystalline 

cell [31]. Interaction with the solar lattice resulted in weaker electric fields when the 

transmission line was oriented in parallel to the electrodes which demonstrates the antennas 
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dependence on solar cell properties. The antenna area shadow is a significant 13% of the 

solar cell area. 

In [32] solar cells were connected to an aluminium plate using conductive epoxy to 

form the ground plane for a meshed patch antenna on transparent substrate. It was found that 

impedance matching the antenna with the feed traversing the solar cell connected the ground 

plane was difficult resulting in a poor radiator. 

 
Fig. 1.17 Solar Patch Antenna [31] 

 
Fig. 1.18 Meshed Patch Antenna [32] 

1.4.5 Fully Solar Integrated Antenna 

An idealised case would be to manufacture the antenna and solar cell as one compact 

light weight system, considerably reducing production costs. This is easier to achieve with 

less efficient solar cell types which are cheaper to manipulate into a desirable shape for 

radiation. There is a trade-off with the removal of photosensitive material to achieve radiation 

however weight and cost reductions make this the most desirable solution. 

A solar concentrator was used as a parabolic reflector to enhance the antenna gain and 

the solar power output by focusing the light on four in-series emitter-wrap-through (EWT) 

solar cells to create a 1.5 GHz dipole antenna [33]. While the 2.2 V (73.8 mW) could support 

a low powered sensor, the design is comparatively large for its output power. 

In [34] a pair of hydrogenated a-Si solar cells are fed with copper bevels to create an 

ultra-wideband dipole antenna. This antenna operates from 3 – 10 GHz with a peak gain of 
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3 dBi. This sensor consumed an average of 55 μW and could last for 95 minutes on a 70 mF 

storage capacitor. Replacing the copper bevel with a solar cell alternative would better utilise 

the real estate available but may impact the antenna performance.  

 
Fig. 1.19 EWT Dipole Antenna [33] 

 
Fig. 1.20 a-Si Dipole Antenna [34] 

An enhanced integration was proposed [35] where a-Si cells were configured with an 

aperture coupled feed to excite a 2.4 / 5.2 GHz slot antenna. However, the antenna footprint 

is circa 10% of the available footprint reducing the solar collecting area. 

In [36] a dipole and a loop antenna covering 3.1 – 10.6 GHz for UWB systems are 

discussed. Both antennas use amorphous silicon solar cells as the radiating elements. The 

dipole antenna was capable of producing 0.04 W under a 1000 W/m
2
 light source. The loop 

antenna was capable of producing 0.075 W however in order to function effectively it would 

require a uniform light source surrounding the antenna. As neither antenna design requires a 

ground plane, both of these designs maximise use of real estate thus greatly reducing the 

required size of a wireless sensor. 

Four 6% efficient a-Si solar cells were deposited on a stainless steel plate containing a 

slot antenna achieving 3.4 dBi gain at 4.34 GHz [37]. This work found that the addition of the 

solar cell on the stainless steel plate reduced efficiency slightly but achieved acceptable 

radiation performance.  
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Fig. 1.21 Dual Band a-Si Slot [35]  

 
Fig. 1.22 a-Si Dipole and Loop [36] 

 
Fig. 1.23 Custom a-Si Slot [37] 

1.4.6 Conclusions from Previous Approaches 

It is clear from the research that co-locating the antenna results in an excessively large 

device area to accommodate both systems and involves unnecessary metallisation therefore 

this integration method should be avoided.  

While using solar cells or panels in a supportive role is a successful form of antenna 

integration, it has limited potential applications as the focused radiation patterns leave little 

adjustability for solar optimisation. 

Utilising a solar cell as the radiating element of an antenna can minimise interaction 

with the solar cell structure and material properties however the requirement for a metallic 

ground plane make this method less desirable. 

A metallic antenna above a solar cell ground plane is a cost effective method of 

integration as the antenna element usually presents the least metallisation requirements while 

the solar cell already has a homogeneous metallic area to act as a ground plane. Further 

miniaturising of the antenna is required to reduce solar shadowing and improve power 

production. 

Fully solar integrated antennas are the ideal solution requiring only one production 

cycle to manufacture both the antenna and power source of the device. Further work is 
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required to maximise use of device real estate by minimising slot apertures and utilising 

different solar cell types for different applications.  

1.5 Applications which can benefit from Solar Antenna Integration 

The range of potential applications for solar integrated antennas range from large 

satellites to small scale wireless sensor nodes and each application has its own unique 

requirements depending on its environment. 

Satellites are becoming smaller meaning that there is increased competition for real 

estate. Cube satellites, such as the ArduSat which is 100 × 100 × 100 mm square, are an 

application where surface area is in high demand. To combat these space restrictions the 

ArduSat uses 30% efficient triple junction solar cells and a turnstile antenna where four 

monopoles fold out from the chassis after deployment [38]. The four monopoles are fed with 

a 90º phase shift between each antenna to give circular-polarization in two directions. The 

monopoles operate at 400 - 480 MHz and achieve a gain of around 1.5 dBi. The use of a solar 

integrated antenna in this application would maximise real estate use thus increasing solar 

cell area and reduce the complexity, cost and weight of the satellite. 

Weather balloons carry a device called a radiosonde which is used to measure 

atmospheric parameters such as temperature, humidity and altitude. Measured data is 

transmitted to fixed receivers on the ground at frequencies of 403 MHz or 1680 MHz. These 

devices generally use water activated batteries which are expensive, have a short life span 

and have a low power output. An integrated solar antenna coupled with a rechargeable 

battery could extend the life of the radiosonde and reduce maintenance costs after recovery. 

The colder air at high altitudes would suit c-Si solar cells which are more efficient when 

cooled. 
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Unmanned aerial vehicles are envisaged for cost effective delivery of goods in the 

future [39]. Similarly UAVs fitted may be used for meteorological research in areas which 

lack adequate infrastructure or are too dangerous for manned flight [40]. In these cases 

electric UAVs could potentially have to travel extensive distances, potentially encountering 

adverse weather conditions resulting in rapid exhaustion of stored energy. Implementing light 

weight solar antennas would increase potential flight times and reduce the likelihood of 

power loss during flight. Polycrystalline silicon solar could provide the high power required 

by an electric vehicle without incurring excessive cost.  

Work has been carried out to investigate the feasibility of wireless sensor nodes 

powered from solar cells. In [30] a solar cell powered wireless sensor node using a 20 mW 

2 cm
2
 amorphous silicon solar cell is used as a monopole antenna. A combination of low 

power components and a super capacitor for storage mean this device can operate at a 

minimum of 2 mW when not in sleep mode. Solar integrated sensors are envisaged for on-

body biomedical applications [41]. Both flexible a-Si and DSS cells configured to include a 

radiating element have a potential to provide a cost effect wireless solution.  

1.6 Thesis Outline and Novelty 

An analysis of the impact of the solar lattice present on most crystalline silicon solar 

cells is carried out in Chapter 2 with a focus on transmission lines and antennas separately. 

This work isolates the effects of the photovoltaic material from the results using an FR-4 

substitute to better understand the effects of the lattice alone. 

Chapter 3 investigates the implementation of a grounding strip beneath a microstrip 

transmission line to improve impedance matching compared to previous solar antennas from 

the literature. The performance of three different low profile inverted-F antenna 

configurations above a 3.5 W multicrystalline silicon solar cell is analysed. Centrally located 



21 

 

antennas are studied with the aim to reduce solar shadowing and achieve greater orientation 

independence compared to previous antennas integrated above solar cells. Offset and dual 

antenna array configurations are evaluated with the aim to improve solar exposure or 

implement beam switching to cover a larger area. 

Four inverted-F antennas located along the intersections between four multicrystalline 

silicon solar cells will be used to study circular-polarization on solar antenna array in Chapter 

4. The antenna location enables greater solar cell exposure than previous circularly-polarised 

antennas in the literature. Polarization reconfigurability is envisaged to allow communication 

between aerial nodes. 

A slot is removed from an amorphous silicon solar cell to create the first ultra-

wideband solar Vivaldi antenna in Chapter 5 with the aim to investigate if sufficient 

metallisation is provided to achieve resonance. 

Dye-sensitised solar cells are utilised for the first time in Chapter 6 to create a dipole 

antenna suitable for indoor and low light applications. All solar cell layers are considered to 

determine their effect on the antenna performance. Indium tin oxide coatings on the solar 

cells glass outer layer are examined to ensure sufficient conductivity is available to achieve 

resonance.  
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2 INTERACTION WITH THE SOLAR LATTICE 

The ground plane is an important structure in any antenna design. In an idealized case 

the ground would be a perfect electric conductor greater than a quarter wavelength in length 

which would result in optimum radiation performance. Imperfections in the ground plane can 

result in reduced gain, irregular radiation patterns or undesired resonances. 

There are scenarios where an imperfect ground plane is desirable, for example [42] 

used a meshed ground plane to reduce the radar cross section of an antenna. In this case, the 

well-designed ground plane reduced the radar cross section by 15 dB at certain frequencies 

with minimal compromise on antenna performance, 0.5 dB reduction in gain and 0.9% 

reduction in bandwidth compared to the solid ground. However, in general transmission lines 

above an imperfect ground plane are susceptible to interference. In [43] work was carried out 

to investigate the signal quality of a microstrip transmission line above various imperfect 

ground planes. Maintaining a solid ground plane beneath the microstrip line was found to be 

crucial for signal quality, discontinuities such as slots in the ground plane resulted in 

significant signal reflection. 

Solar cells are complex structures consisting of a photosensitive material sandwiched 

between two conductive layers making them imperfect inhomogeneous ground planes. 

Conductive layers vary greatly between cell types, they can be a homogenous transparent 

conductor or a lattice of thin silver electrodes intersected by a number of thick bus bars. This 

configuration allows maximum insolation of the photosensitive material while ensuring 

enough conductor is present to carry the high currents produced by the solar cell. Typically, 

antennas radiate using homogenous conductive ground planes. Many crystalline silicon solar 

cells have a homogenous rear contact which can form the basis of a ground plane where the 

superstrates are partially conductive. Positioning the antenna above the solar cell as a ground 

plane has a number of benefits. 
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 The radio module and other electronics would most likely be located beneath the solar 

cell to avoid shading the solar cell therefore positioning the antenna behind the cell 

would cause undesirable interaction with these components.  

 The device can be mounted to a concrete or metallic structure with the solar cell 

facing outward towards the sun meaning that positioning the antenna on the rear of 

the cell would incur considerable losses. 

 Positioning the antenna centrally above the solar cell minimises ground plane effects 

ensuring a symmetric radiation pattern is achieved. 

In this chapter a metallic lattice printed on FR-4 substrate, shown in Fig. 2.1, is used 

to quantify the interaction with a periodic lattice without a silicon sub-layer. The use of FR-4 

substrate in this imitation cell removes any effects caused by electrical conductivity variation 

in the photosensitive material of a solar cell due to varying light intensities between 

measurements. It also allows an FR-4 substrate with no lattice to be used for comparison. 

 
Fig. 2.1 Exploded view of FR-4 Solar Cell Substitute 

The lattice structure used is similar to those found on crystalline silicon solar cells. It 

was printed in copper on one side of a 0.4 mm thick FR-4 substrate with a uniform copper 

layer on the opposite side. Crystalline silicon cells are commonly manufactured in 6 × 6ʺ 

cells (152.4 × 152.4 mm) however due to manufacturing limitations the FR-4 substitute was 

manufactured to 133 × 133 mm. The lattice consisted of 49 × 0.1 mm wide copper traces 

intersected by 2 × 2 mm traces spaced 74.18 mm apart. Although the dielectric constant for 
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FR-4 at εr = 4.3 is lower than the εr = 20 for silicon, this approach enables an initial analysis 

of the effects of the conducting lattice.  

The effect of changing the lattice orientation on both an IFA and the transmission line 

will be investigated in this chapter. The orientation of the models discussed is in relation to 

the lattice of electrodes for example Fig. 2.2 (a) shows the antenna parallel to the lattice and 

the transmission line perpendicular to the lattice. Fig. 2.2 (b) shows the antenna perpendicular 

to the lattice and the transmission line parallel to the lattice. 

 
 (a)  Parallel (b) Perpendicular 

 

Fig. 2.2 Antenna Orientations 

2.1 Transmission Lines and the Solar Lattice 

A grounded coplanar waveguide (CPW) traversing the lattice was used to assess the 

interaction between a transmission line and the lattice. A grounded CPW was chosen as 

microstrip line sensitivity to lattice orientation has previously been demonstrated in [31]. The 

additional grounding of the CPW was expected to achieve greater isolation however a 

connection to the solar cell was required for improved antenna grounding. The structure is 

shown in Fig. 2.3 was printed on 0.4 mm thick FR-4 substrate with the strip width 

ws = 0.715 mm, the gap g = 0.  

The CPW transmission line was designed without the lattice and then tested in four 

configurations (a) with no lattice or airgap, (b) with no lattice and with an airgap, (c) parallel 

to lattice and (d) perpendicular to the lattice.8 mm and the ground width wg = 4.94 mm. 
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Fig. 2.3 Coplanar Waveguide Dimensions 

The transmission line and its substrate from configuration (a) were raised by the 

height of the lattice thickness (0.035 mm) to create the configuration (b) leaving an air gap 

between the substrates. This gap reduces capacitance in the system as capacitance between 

two plates is inversely related to the distance between the two plates. This can be simulated 

by adding a negative capacitance in parallel to the transmission line of configuration (a) as 

shown in Fig. 2.4. 

 
Fig. 2.4 Impedance Variation between Configurations (a) and (b) 
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Configuration (c) introduced the metallic lattice in the parallel orientation this 

increases the capacitance from configuration (b) as the lattice introduces differing 

capacitance areas along the transmission line length. Where the transmission line crosses the 

bus bar, Fig. 2.5 (a), the bus bar provides a route for current to flow along a greater area. 

Away from the bus bar there are stronger electric field between the transmission line and the 

ground plane but there is also interaction with the single electrode running beneath the 

transmission line, Fig. 2.5 (b).  

 
(a) Current Density Cut Through Bus Bar 

 
(b) Current Density Cut Through Cell Centre 

Fig. 2.5 Parallel Current Density Plots 

 

The increased current density between the transmission line and the bus bar shown in 

Fig. 2.5 (a) appears to be evenly distributed along the length of the bus bar which introduces 

a series inductance. The additional capacitance and inductance can be simulated in CST 

microwave studio, shown in Fig. 2.6.  
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Configuration (d) utilised the lattice in the perpendicular orientation which increased 

the parallel capacitance considerably as the transmission line covered a greater area of the 

lattice. In addition the orientation of the lattice allows currents to flow further on the lattice 

introducing an inductive element into the system, shown in Fig. 2.7. 

 
Fig. 2.6 Impedance Variation between Configurations (a) and (c) 

  

 
(a) Current Density Cut Through Lattice Bar 
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(b) Current Density Cut Between Lattice Bars 

Fig. 2.7 Perpendicular Current Density Plots 

 

In the area where the lattice is not between the transmission line and the ground plane 

the capacitance has the same properties as configuration (b) except the area is now reduced. 

Where the lattice is located between the transmission line and ground plane there is 

effectively two small capacitors, one between the transmission line and lattice and one 

between the lattice and ground. All these capacitors combine to yield an equivalent 

capacitance which is greater than configuration (b). These properties can be simulated by 

increasing the parallel capacitance and including a series inductance as shown in Fig. 2.8.  

 
Fig. 2.8 Impedance Variation between Configurations (a) and (d) 
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The insertion loss also indicates the considerable mismatch between orientations, it 

was 2.5 dB for configuration (a), 3.3 dB for configuration (b), 3.8 dB for configuration (c) 

and 2.1 dB for configuration (d). Transmission coefficients are shown in Fig. 2.9.   

 
Fig. 2.9 Simulated Transmission Coefficient 

A simulation was carried out in which the number of electrodes in the lattice was 

reduced from 49 to 25 to assess the impact of the electrode number on the transmission line 

performance. Both the parallel and perpendicular orientations saw a reduction in capacitance 

and inductance due to the removal of the electrodes as would be expected. 

Increasing bus bar spacing was also simulated to assess the impact on the interaction. 

In both parallel and perpendicular cases there was an increase in inductance due increased 

current flow on the electrodes between the bus bars. 

The FR-4 substitute is imitating the lattice structure found on a 6 × 6ʺ 

(152.4 × 152.4 mm) crystalline silicon solar cells but these cells are also commonly 

manufactured as 3 × 6ʺ cells (76.2 × 152.4 mm). To assess the impact of reducing the cell 

width the FR-4 substitute was reduced to 66.5 × 133 mm. This cell was simulated in the 

parallel orientation as this maintains the 133 mm CPW length. It was found that reducing the 
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length of the electrodes reduced the capacitance however greater current flow along the outer 

sections of the lattice resulted in a slight rise in inductance, shown in Fig. 2.10.  

 
Fig. 2.10 Current Flow on Lattice of 66.5 × 133 mm Substitute Cell 

2.2 Antennas and the Solar Lattice 

To analyse the contributing factors, simulations were carried out in which the IFA 

grounding stub was connected directly to the ground plane through the substrate and the 

antenna was fed directly through the substrate as shown in Fig. 2.11. A printed IFA was 

chosen due to its small footprint compared to patch antennas which are commonly used 

above solar cells in the literature. 

This configuration would not be possible in reality as it would damage the brittle solar 

cell. These simulations show the effect of the lattice on the antenna only i.e. removes the 

effect of the transmission line. 
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Fig. 2.11 Antenna Configuration 

The antenna is an IFA printed on 0.4 mm thick FR-4 substrate which was designed 

above the conventional ground plane with no lattice to cover all the WLAN channels. The 

latticed structure was then introduced beneath the antenna for the perpendicular and parallel 

tests.  

The antenna above the conventional ground plane was resonant at 2.454 GHz with a 

6.44% bandwidth as shown in Fig. 2.12. The antenna has a simulated efficiency of 95% and 

0.62 dBi boresight gain with a peak gain of 3.9 dBi. The beamwidths were 146° in the XZ 

plane and 156 in the YZ plane.  

 
Fig. 2.12 No Transmission Line S11 Results 

Introducing the lattice in the parallel orientation shifted the resonant frequency to 

2.448 GHz and increased the bandwidth to 6.82% due to a change in the input impedance of 
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the antenna. The efficiency was reduced to 89% and the boresight gain was also reduced to 

0.28 dBi with 3.6 dBi peak gain.  

Rotating the lattice into the perpendicular changes the input impedance but the 

resonant frequency remains at 2.448 GHz with a bandwidth of 6.58%. Again efficiency at 

92% was reduced compared to the copper ground and boresight gain was also reduced to 

0.31 dBi with a peak of 3.68 dBi. 

Antenna impedance variation due to the lattice is considerably lower than the 

transmission line variation however the downward shift in resonant frequency is evidence of 

the introduction of capacitive and inductive element due to the lattice, shown in Fig. 2.13. 

 
Fig. 2.13 Variation in Antenna Input Impedance 

  

The antenna input impedance changes can be replicated by adding parallel 

capacitance and series inductance to the ground of the FR-4 antenna. Adding 0.06 pF of 

parallel capacitance and 0.2 nF of series inductance shifts the input impedance of the FR-4 

antenna to match that of the parallel antenna.  
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2.3 Complete System 

An IFA fed using a 50 Ohm grounded CPW transmission line created on a 0.4 mm 

thick FR-4 substrate with εr = 4.3 was used to investigate the interaction of combined antenna 

and transmission line with the lattice. The dimensions of the IFA, shown in Fig. 2.14, are 

LA = 19.12 mm, HA = 10 mm, TA = 0.784 mm and the grounding stub dimensions are 

LS = 5.9 mm and TS = 1.6 mm.  

HA

LA

TA

TS

LS

 

Fig. 2.14 Antenna Dimensions 

As before, a 0.4 mm thick substrate with a lattice of copper electrodes printed on one 

side and a solid copper ground plane on the other is used to represent a solar cell. The 

coplanar ground is connected to the imitation cell copper ground via the SMA connector. The 

transmission line extends 5 mm out from the lattice to prevent shorting between the front and 

rear contacts of the solar cell when the SMA is connected. 

In contrast to the antenna only simulation, the complete system experiences a 

frequency shift as a result of a change in lattice orientation due to the transmission line 

impedance mismatch. The measured bandwidth of the antenna on the FR-4 covered ground 

plane was 4.93% and increased to 5.40% and 7.29% for the perpendicular and parallel 

orientations, respectively. S11 results are shown in Fig. 2.15   
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Fig. 2.15 Complete System S11 Results 

The antenna on the FR-4 covered ground had an efficiency of 88% with a simulated 

realised gain of 3.6 dBi. The perpendicular orientation had an efficiency of 62% with a peak 

realised gain of 2.0 dBi while in the parallel orientation was 34% with 0.3 dBi realised gain. 

The reduction in simulated gain for both the parallel and perpendicular orientations compared 

to the FR-4 covered ground plane is an indicator of the impedance mismatch due to the 

presence of the lattice. 

2.4 Conclusion 

Previous works have shown a reduction in antenna performance as a result of antenna 

orientation on a solar cell lattice using microstrip patch antennas. This chapter has focused on 

the impact of the lattice by isolating the lattice using an FR-4 based solar cell substitute.  

It has been shown that crossing the solar lattice with a transmission line induces 

current on the solar lattice; these currents lead to variation in the transmission line impedance 

of 23% with the introduction of the solar lattice. Due to the a-symmetric nature of the solar 

lattice, there is a 10% impedance variation between orientations. It has been shown that the 

impedance change is due to changes in the capacitance and inductance of the transmission 
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line. A matching network could be used to counteract this variation in one orientation 

however the transmission line would still be mismatched in the orthogonal orientation.  

Antennas fed directly without a transmission line have shown greater resilience to 

impedance mismatch than the transmission line, experiencing an 8% impedance variation 

with change in orientation. Despite this the introduction of the solar lattice still has an impact 

on the antenna performance with 6% lower efficiency and 0.3 dB less gain compared to the 

no lattice case. The antenna is also found to have differing levels of interaction with the solar 

lattice depending on its orientation such as a 3% efficiency difference between orientations. 

The complete system exhibits similar sensitivity to orientation with efficiency reduced 

to 62% with the introduction of the perpendicular lattice and 34% with the introduction of the 

parallel lattice. This clearly demonstrates a need to isolate the transmission line from the solar 

lattice as will be demonstrated in Chapter 3. 
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3 MULTICRYSTALLINE SOLAR CELL AS GROUND PLANE FOR IFA 

In an ideal scenario the RF ground would be a homogeneous conductor with σ = ∞, 

however in addition to the latticed electrodes, solar cells contain a photosensitive material 

between the front and rear electrical contacts which also interacts with radiating structures. 

This material is usually a semiconductor with a high dielectric constant and a conductivity 

which varies depending on the light intensity [44]. This conductivity variation can affect the 

antenna performance when the homogeneous rear contact of a crystalline silicon cell is used 

as RF ground. 

Additionally solar cells absorb photons which provide enough energy for electrons to 

break free from their bounding atoms creating the potential difference between the cell 

contacts. Under increased levels of insolation more energy is absorbed than can be utilised in 

this process and the excess is released as heat [8]. In [45] the influence of solar heating on the 

performance of a patch antenna integrated with a multi-crystalline silicon solar cell was 

reported. It was found that the temperature of the solar cell after 30 minutes of exposure to a 

1000 W/m
2
 light source did not significantly affect the antenna performance. The dielectric 

substrate used to isolate the patch from the solar cell exhibited less temperature stability. 

In this chapter a sample multi-crystalline silicon solar cell produced by Solland is 

integrated with Inverted-F Antennas positioned in three configurations to investigate the 

interaction with a full solar cell. The solar cell consists of three elements, a latticed anode 

front contact, a cathode layer rear contact and a semiconductor material between the contacts. 

Two perpendicularly oriented 2 mm wide bus-bars, 74.18 mm apart, interconnect the 

57 × 0.1 mm wide electrode wires which form the lattice. The semiconductor is a 

multicrystalline silicon layer and is simulated with a permittivity of 20 and an electrical 

conductivity of 242,270 S/m for exposed silicon and 500 S/m for shaded silicon. The cathode 

layer of the solar cell consists of a homogeneous layer of aluminium.  
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The solar cell can produce 3.5 W under irradiance of 1000 W/m
2
 which is 

considerably higher than most alternative solar cells, such as the current record holding a-Si 

cell which would produce 2.5 W if manufactured to cover an identical area [14]. A low 

profile IFA is used to retain the high solar cell power output by minimising shadow on the 

solar cell. The first antenna configuration centred the antenna on the ground plane, the second 

configuration located the antenna above a bus bar and the final location introduced a second 

antenna above the opposing bus bar to create a dual antenna array. 

3.1 Transmission Line Design 

To counteract the interaction with the solar lattice discussed in Chapter 1, each 

antenna discussed in this chapter is fed using a 50 Ω microstrip transmission line (0.784 mm 

wide) on a 0.4 mm thick FR-4 substrate with a 6 mm wide copper ground. The ground is 

isolated from the anode front contact by another 0.4 mm thick FR-4 layer as shown in Fig. 

3.1. 

 
Fig. 3.1 Transmission Line Configuration 

The copper ground runs the entire length of the solar cell and is connected to the 

cathode layer at both ends. Simulations were carried out where the connection is removed 

from the end of the grounding strip leaving a 156.18 mm long grounding strip. The grounding 

strip was further reduced to 91.34 mm long, the end of the antenna and finally the grounding 

strip was reduced to 69.5 mm, the end of the grounding stub. The results are arranged in pairs 

where colours denote orientation and symbols denote configuration, shown in Fig. 3.2. 
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Full Grounding Strip 

 
156.18 mm Strip 

 

 
91.34 mm Strip 

 
69.50 mm Strip 

Fig. 3.2 Effect of Grounding Strip on Impedance 

It is clear from the results that an IFA is less susceptible to impedance mismatch due 

to orientation when the grounding strip is connected at both ends of the solar cell. The 6 mm 

ground width adequately isolates the transmission line from the cell lattice, thereby 

improving gain, efficiency and bandwidth, while maximizing the surface area of the solar cell 

exposed to sunlight. 

3.2 Antenna Design 

The antenna was designed to use the cathode layer of the solar cell as a ground plane, 

with the transmission line positioned above the electrode lattice of the solar cell. The IFA is 

printed on 0.4 mm thick FR-4 with dimensions HA = 6 mm, TA = 1 mm, TS = 0.4 mm, 

LS = 3.5 mm and LA = 22 mm as shown in Fig. 3.3. 
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Fig. 3.3 Printed Inverted-F Antenna Dimensions 

The antenna could be optimised to reduce its height, further reducing shadowing and 

in turn reducing the impact on the solar cell performance. However decreasing the height of 

the IFA will reduce its bandwidth [46]. There are however many solutions to this problem as 

these antenna types are commonly used in laptop design [47], [48], [49]. In some cases 

adjustment to the size of the ground plane and grounding stub are sufficient to achieve a 

higher bandwidth [47]. A better method is to consider the IFA as two separate resonating 

structures, an inverted L monopole and a slot created between the grounding stub and the ILA 

[49]. This allows optimisation of both of these resonators to give a combined bandwidth 

much greater than that achievable from the monopole alone. It is also possible to introduce a 

second resonance by adding a spiral into the resonating element of the IFA [50].  

Solar cell integration rather than IFA optimisation is the focus of this chapter so a 

classical IFA element is used however the feed and shorting strips are reversed to facilitate 

improved grounding of the antenna. To ensure a direct comparison the same antenna and 

transmission line configuration is used in each location. 

3.3 Centrally located IFA 

Centrally locating the antenna in the ground plane is desirable to achieve a symmetric 

radiation pattern. This setup allows the antenna to be oriented either perpendicular or parallel 

to the lattice. The perpendicular configuration can be seen in Fig. 3.4. 
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Fig. 3.4 Centrally Positioned Antenna in Perpendicular Configuration 

The antenna has a height of 6.9 mm above the solar cell and along with the 

transmission line, has a combined footprint which is 3.94% of the solar cell surface which is a 

considerable reduction in antenna footprint compared to previous solar patch antenna designs 

which covered 12.95% of the cell area [44]. The measured and simulated results for the 

centrally located antenna in the (a) parallel to lattice; (b) perpendicular to lattice orientations 

are given in Table 3.1, with S11 results are shown in Fig. 3.5. 

Table 3.1 Central Antenna Orientation Results 

Transmission Line 

Orientation 

Freq 

(GHz) 

-10 dB Bandwidth 

(%) 

Peak Gain 

( dBi) 

Para to Lattice Sim  2.448 3.54 3.9 

Para to Lattice Meas  2.450 3.47 4.4 

Perp to Lattice Sim  2.456 3.72 3.7 

Perp to Lattice Meas 2.459 3.83 4.3 

 

The measured bandwidth for the parallel and perpendicular orientation was found to 

be 3.47% and 3.83%, respectively. The measured gain for the parallel and perpendicular 

orientations was 4.4 dBi and 4.3 dBi, respectively, with simulated total efficiencies of 72.5% 

and 69.9%. The peak gain and bandwidth are superior to reported microstrip patch solar 

integrations with a gain improvement of 3.2 dB for either orientation due to reduced exposure 

to the silicon in the solar cell. The measured 3 dB beamwidths for the proposed antenna are 

between 140° and 150° which are also notably wider than the solar patch antenna (75° - 95°). 

The beamwidth results are shown in Fig. 3.6. 
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Fig. 3.5 Measured and simulated S11 for the parallel and perpendicular antenna 

 
Fig. 3.6 Radiation Patterns for YZ Plane (Left) and XZ Plane (Right) 

The antenna has a larger bandwidth, lower gain and efficiency in the perpendicular 

orientation compared to the parallel orientation due to more exposure to lossy silicon. A 

small frequency shift between the two orientations was observed, caused by current flow in 

the lattice. The current flow in the lattice electrodes is aligned with the antenna when in the 

parallel orientation. In the perpendicular orientation the lattice current flow is opposed to the 

antenna current. This results in a slight decrease in effective antenna length, upwardly 

shifting the resonant frequency for the perpendicular orientation. 
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Simulations were carried out to assess the impact on the IFA performance of varying 

the solar cell semiconductor electrical conductivity. In both orientations above the lattice, a 

conductance variation from 242,270 S/m
2
 to 500 S/m

2
 caused a 0.3% shift downward in 

frequency with no significant change in bandwidth. It should be noted that when replicating 

this test with measurements, caution should be used while interpreting the results as varying 

levels of insolation will result in a temperature change. Therefore it would be difficult to 

isolate the effects to purely those of the conductivity variation as has been simulated.  

3.4 Offset above bus bar 

Offsetting the antenna from the centre of the ground plane, shown in Fig. 3.7, is 

desirable to steer the antenna beam for example when the solar cell is mounted at an angle for 

maximum solar insolation. 

 
Fig. 3.7 Offset IFA Configuration 

For an antenna and feed line positioned above one of the bus-bars, the area of exposed 

silicon is reduced by 2.65%. The antenna is resonant as 2.451 GHz with a simulated 71% 

efficiency and a bandwidth of 2.57%, as shown in Fig. 3.8. 
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Fig. 3.8 Measured and Simulated S11 for the Offset Antenna 

The pattern was divergent with a null located centrally above the ground plane and 

four lobes of ~64° beamwidth asymmetrically positioned around the null due to the off-centre 

position of the antenna/bus-bar with respect to the ground plane. The peak measured gain was 

4.3 dBi, radiation patterns are shown in Fig. 3.9. 

 
Fig. 3.9 Radiation Patterns for YZ Plane (Left) and XZ Plane (Right) 
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3.5 Dual IFA Array 

To improve the radiation symmetry and gain, an array was configured using an 

antenna on each bus-bar spaced 76.18 mm apart as shown in Fig. 3.10. 

 
Fig. 3.10 Dual Antenna Configuration 

While there is a cost in terms of a 5.30% solar shadow of the cell area, it is 

considerably less than previous solar patch antenna designs which covered up to 13% [44]. If 

the antennas were moved off the bus bars and closer to each other, there would be a solar 

shadow of 7.89%. Fig. 3.11 shows that there is greater than 20 dB isolation between the two 

antennas. The measured bandwidth for the antenna array was 3.22%.  

 
Fig. 3.11 Measured Dual Antenna Coupling 
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A microstrip transmission line power splitter, shown in Fig. 3.12, was used to 

distribute power evenly between each antenna while maintaining a 0° phase offset. Measured 

results show the insertion loss at the outputs to be 3.5 dB and 3.9 dB with a phase offset of 

0.78°. 

 
Fig. 3.12 Microstrip Power Divider Configuration 

The measured radiation pattern is more focused with 6.5 dBi gain and 3 dB 

beamwidths of 60.2º and 144.8º for XZ and YZ planes respectively, shown in Fig. 3.13. The 

simulated efficiency was 67.37%. This is a 2.2 dB gain improvement over a single antenna 

centrally-positioned on the solar cell (off bus-bar) and is more suited to applications that 

require greater range. Antenna position results are shown in Table 3.2.  

 
Fig. 3.13 Radiation Pattern for XZ Plane (Left) and YZ Plane (Right) 
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Table 3.2 Measured Dual Antenna Position Results 

Antenna Configuration 
Realized Gain 

( dBi) 

Beamwidth (º) 

XZ Plane YZ Plane 

Single Antenna off Bus-Bar 4.3 152.4 141.0 

Dual Antenna on Bus-Bars 6.5 60.2 144.8 

 

The antenna S11 was measured under various levels of insolation. The solar test light 

was off for the first measurement, and the light intensity was 94 Lux and the cell surface 

temperature was 20°C. The light was turned on and the S11 was recorded immediately; the 

light intensity was 26600 Lux and the surface temperature was 23°C. The light was left on for 

a further 5 minutes and the S11 was again recorded; the light intensity was 28100 Lux and the 

surface temperature was 46°C. The measured S11 is shown in Fig. 3.14; a 0.8% frequency 

shift is observed after the light source is turned on possibly due to electrical conductivity 

variation as discussed in Section 3.3. The curve appears to degrade as the cell heats up due to 

the level of insolation. 

 
Fig. 3.14 Dual Antenna S11 for Different Insolation Levels  
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3.6 Beam Switching 

Blind zones due to the relatively narrow 60.2º beamwidth of the antenna array in the 

XZ plane can be counteracted by implementing beam switching. Measurements were carried 

out with phase shifts Δφ = 0º, +90º and ─90º between the feeds to the two antennas.  

The Δφ = 0º phase shift was obtained using the microstrip power splitter with quarter 

wave transformers discussed in Section 3.5. A single-box branch line coupler was used to 

produce the Δφ = +90º and Δφ = ─90º phase shifts as shown in Fig. 3.15. The branch line 

coupler created a phase offset of 89.55° with insertion loss of 3.9 dB and 2.5 dB at the 

outputs. 

 
Fig. 3.15 Branchline Coupler Configuration 

With a Δφ = 0º phase shift, the main lobe has a peak broadside gain of 3.33 dBi. The 

Δφ = +90º phase shift produces a 5.24 dBi peak gain at θ = +39º. The Δφ = ─90º phase shift 

provides a 4.52 dBi gain main lobe at θ = ─31º. Measured radiation patterns for the beam 

switching are shown in Fig. 3.16. 
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Fig. 3.16 XZ plane (left) and YZ plane (right) for Array Phase Offset (Δφ)  

3.7 Solar Shadowing 

Solar shadowing tests were carried out on the worst case scenario which was the dual 

antenna which covered 5.3% of the solar cell when facing directly into a light source. A 1450 

Lux tungsten halogen directed light source was used to evaluate antenna shadowing on the 

cell. The light source is positioned 960 mm from a pivoting table used for angle of incidence 

measurements on solar cells. Shade due to the covered area is added to when the angles of 

incident light tend towards the plane of the solar cell. Extra shadows are projected from the 

vertical surfaces on the antenna and microstrip line profile. Antenna shadows from the YZ 

plane remain over the 6 mm wide ground plane of the microstrip line but they extend beyond 

its surface when the angle of incidence θ ≥ 24º for the XZ plane.  

The shadow cast by the antenna and its transmission line minus the lattice as a result 

of the angle of the incidence was measured. For θ = 0º, 5.30% shadowing of the solar cell 

area occurs. For θ = 30º it increases to 6.18% and for θ = 60º, shadowing accounts for 9.65% 

coverage.  
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The effect of shadowing on the solar cell output was assessed by measuring the open-

circuit voltage (Voc) and short-circuit current (Isc) for each of the sampled incident angles, 

shown in Table 3.3. 

Table 3.3 Voc and Isc Results 

Incident Angle  Shade (%) Voc (V) Isc (A) 

No Antenna 0º 0 0.499 4.03 

No Antenna 30º 0 0.513 3.01 

No Antenna 60º 0 0.518 1.30 

Dual Antenna 0º 5.30 0.506 3.81 

Dual Antenna 30º 6.18 0.511 2.88 

Dual Antenna 60º 9.65 0.515 1.26 

 

The Voc increases suggest that the addition of the antenna and the oblique incident 

angles allow the solar cell to cool slightly, thereby increasing the solar efficiency. Isc 

decreases as the shadowing increases. Measured I-V Curves for each incident angle are 

shown in Fig. 3.17. 

 
Fig. 3.17 Measured Solar Output at Various Incident Angles 
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In the θ = 0º case, 5.30% of the solar cell area is shaded yet measured results show a 

9.5% degradation in the solar output. In the 30º case, 6.18% shading occurs yet the 

measurement shows 3.6% degradation. For the 60º case, the 9.65% shadow corresponds to a 

3.4% reduction in the measured output. The results indicate that the reduction of the effective 

solar cell area due to oblique angling of the light source is more significant than antenna 

shadowing, shown in Fig. 3.18.  

A geometrical analysis was carried out by subtracting the lattice area from the total 

solar cell area and by taking account of the reduction of the effective aperture area of exposed 

silicon due to the angle to the light source. The maximum power point (MPP) for each angle 

was calculated from the measured data. This analysis shows that for a 0° angle, there is 

22,845 mm
2
 of exposed silicon and the antennas shadow covers 1,214 mm

2
 (5.3%). At a 30º 

angle, the silicon area directly facing the light source is reduced to 19,785 mm
2
 (86.6%) 

which corresponds to 87.7% of the measured 0º MPP for the solar cell without antennas. 

Although the shadow increases in the plane of the solar cell, from the perspective of the 

collimated light source there is only shadow cast over 942 mm
2
 (4.8%) of exposed silicon 

similar to the 4.3% reduction in Isc. Similarly, the 60º case is reduced to 11,423 mm
2
 (50%) 

of the available silicon and produces 45.0% of the measured 0º MPP. The antenna shadow 

covers 335 mm
2
 (2.9%) which is in line with the 3.1% reduction in Isc. 



51 

 

 
Fig. 3.18 Reduction in Solar Capture Area due to Oblique Incident Angles 
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3.8 Application: Greenhouse Sensor 

Remote monitoring of environmental conditions for control of temperature and 

humidity in horticultural growing houses is one of the emerging applications where 

autonomous sensors are linked with radio networks. Industrial glasshouses like Thanet Earth, 

shown in Fig. 3.19, can be 8 m high with an area of 0.90 km
2
 and battery maintenance of 

portable units can become a considerable expense. 

 
Fig. 3.19 Thanet Earth Industrial Greenhouse [52] 

Wireless sensor nodes are envisaged located throughout the greenhouse positioned on 

growing tables as required. A master node located in the rafters of the building could relay 

measured data to a central monitoring system, shown in Fig. 3.20. The wide beamwidths of 

the solar antennas discussed in this chapter mean the sensor could be better positioned to 

optimise solar collection while maintaining an RF link to the master node. 

 
Fig. 3.20 Proposed Wireless Sensor Configuration 
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The solar antenna uses a 3 W solar cell which delivers a high current but low voltage. 

Boost converters which raise the 0.5 V output to a more useable range of 1.8 V to 5 V can 

usually only output 100’s of mAs with such low input voltages. Super capacitors could be 

implemented as a reservoir before the boost converter allowing the solar cell to charge the 

capacitor with its maximum current output during periods of sufficient insolation. The boost 

converter could then slowly charge a second bank of capacitors to the higher voltage required 

by the microcontroller and the sensors, this would reduce the output variation due to an 

intermittent light source. A device based on super capacitors would present considerable 

initial investment however, a maintenance technician would not be required, there would be 

no replacement battery costs and the capacitors are capable of millions of discharge cycles 

while batteries which have low cycle lives and can suffer overcharge and overheat failures 

[53].  

It is common for the individual sensors which make up a wireless sensor to come in 

modular form which would allow the sensor to be reconfigured to suit different plants and 

environmental factors to be monitored. Ensuring that only required sensors are used reduces 

the power requirements of the overall wireless sensor prolonging its life. In addition the 

system can be designed to supply power to sensors during measurements only, common 

sensor active power requirements are shown in Table IV. 

TABLE IV 

VOC AND ISC RESULTS  

Sensor  Power (mW) REF 

Temperature 0.03 [54] 

Humidity 10 [55] 

Soil Moisture 15 [56] 

Light Intensity 0.6 [57] 
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3.9 Conclusion 

The addition of a grounding strip along the length of the solar cell reduces the 

coupling effect of the transmission line to the solar lattice. This greatly reduces the sensitivity 

to antenna/feedline orientation on the lattice.  

Low profile IFA antennas integrated with a photovoltaic solar cell which provide 

greater solar exposure and improved antenna performance have been discussed. Both the 

single and dual antenna designs have considerably reduced footprint when compared to 

previous work with patch antennas. Despite the grounding strip stretching the length of the 

cell, the area exposed to sunlight is 9.11% greater for the central antenna than solar patch 

designs in the literature when facing directly into the light source [44].  

The central antenna has a slightly larger bandwidth, a significantly wider beamwidth 

in both the YZ and XZ directions and a gain of 4.4 dBi, a gain increase of 3.2 dB compared to 

previous patch integrations. 

While the offset configuration minimizes impact to the solar power output, the 

divergent radiation pattern with a-symmetric lobes is less desirable.  

The dual antenna array covers more of the solar cell area than a single element IFA 

but the peak gain has a 2.2 dB improvement with a slightly larger beamwidth in the YZ plane 

and the ability to cover a larger angular sector in XZ plane by implementing beam switching. 

It also compares favourably to patch antenna integrations by providing wider bandwidth and 

higher gain. Beam switching offers flexible pattern configurations for different mounting 

angles. 

Shadow casting tests show that the antenna shadow has less impact than oblique 

angles of incidence. Oriented directly at a 1450 Lux light source, the antenna reduction of 

solar power output is limited to 5.5%.  
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4 MULTICRYSTALLINE SILICON SOLAR PANEL AS GROUND 

PLANE FOR CP ANTENNA 

There are many applications in which linearly polarized solar antennas may not be 

capable of supporting a satisfactory RF link due to movement of the integrated device for 

example an Unmanned Aerial Vehicle (UAV) or a cubesat. Both of these devices rotate as 

they travel which can cause polarization mismatch, fading and flutter resulting in loss of data. 

Satellites also suffer from faraday rotation and ionospheric scintillation due to diffraction as 

the RF signal passes through electron dense ionosphere regions resulting in variations in 

polarization, amplitude and phase [58], [59]. Where a linearly polarized signal might 

disappear in a fade, a circularly-polarized signal is less sensitive to polarization mismatch 

losses increasing the probability of a successful transmission. 

Circular-polarization in the S-band has been achieved using two linearly-polarized 

70%-transparent meshed patch antennas with a 90° phase-offset sharing a single microstrip 

feed line [60]. The patches are designed to use the conductive shielding of a satellite as the 

ground plane and the solar panel glass as a substrate. Printed on non-transparent Rogers 

laminate without the solar cells, the antenna gain is 5.15 dBi at 2.47 GHz. However exposing 

the electric fields to lossy solar cells is likely to degrade the gain. The impedance bandwidth 

of 2% covers WiFi channels 9-14. The Left-hand Circular-Polarization (LHCP) bandwidth of 

0.61% has 3-dB beamwidths of 20° and 80° in the orthogonal planes. 

A 2.5 GHz cavity backed CP slot antenna [61] has potential for solar cells integration 

on upper surface areas without interfering with the radiated performance. The antenna and 

feedline are manufactured on separate substrates which add 3 mm volume below the solar 

cells. Measurements without solar cells showed a 3.5 dBi gain and a 2.7 dB axial-ratio in the 

main beam with a 60° beamwidth. The measured bandwidth was 2.39% and covered Wi-Fi 

channel 14. 
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A 3.87 GHz amorphous silicon solar cell was manufactured with an integrated 

crossed-slot antenna [62]. The slot is excited with a microstrip line printed on 0.76 mm thick 

substrate and offset beneath the slots at a 45° angle. A 3.7 dBi gain is achieved using a back 

reflector offset 10 mm behind the transmission line, with a 10.8 mm overall device thickness. 

The antenna achieves a 3.1% CP bandwidth that covers the 2.6% impedance bandwidth. The 

beamwidths were 46° and 71° in the XZ- and YZ-planes respectively.  

This chapter will discuss a circularly-polarized solar cell antenna consisting of four 

low-profile printed inverted-F antennas with a groundplane of four multicrystalline silicon 

solar cells suited to airborne CP communications. The antennas are sandwiched between 

neighbouring solar cells to minimise the profile and solar shadowing ensuring 100% 

insolation of the multicrystalline cells when directly facing a light source. The antenna is 

designed to achieve CP over the WLAN channels 2.4 - 2.45 GHz. With the antennas fed 

individually, it is possible to alter the polarization or implement beam switching improving 

potential RF coverage.  

4.1 Proposed Antenna Configurations 

The square ground plane consisted of four of the c-Si cells described in Chapter 3 

arranged to form a 322 mm wide ground plane over a lightweight support. The antenna uses 

the cathode layer of the solar cells as a ground plane. A strip of copper is used to connect the 

rear contacts of each solar cell to create a solar panel with an output of around 0.5 V and over 

12 W. The solar panel and antennas are shown in Fig. 4.1. 
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Fig. 4.1 CP solar antenna configuration 

The IFA dimensions are HA = 6 mm, TA = 1 mm, LA = 22.65 mm and LS = 8.96 mm, 

shown in Fig. 4.2. Each antenna is positioned between each pair of solar cells 8.67 mm from 

the centre of the ground plane. This location allows for 100% irradiation of the solar cell 

when directly facing into a light source. While the low-profile of the antenna minimises 

shadow casting from light sources at low oblique angles, this has lower impact than the loss 

of light intensity at low angles. 

 
Fig. 4.2 Printed inverted-f antenna parameters 

4.2 Feed Network Design 

The feed line consists of a rat race coupler and two branchline couplers. The rat race 

coupler has two outputs with equal power but a 180° phase shift between them. Each output 

feeds a branchline coupler which introduces a 90° phase shift resulting in four outputs of 

equal power with a 90° phase shift between them. 
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All simulations were carried out using CST Microwave Studio. Measured results for 

the transmission line were used to create a touchstone file which was used to feed the antenna 

in the simulation. The use of a touchstone file instead of a simulated version of the 

transmission lines removes variation due to discrepancies in the manufacturing process. In 

addition the large antenna size with minute detail results in a large computational domain, 

introducing the transmission line into this simulation would further increase computational 

expense making progress slow. Identical antennas positioned above a copper ground plane 

and fed using the same transmission line configuration were simulated for comparison.  

The feed line network has measured insertion losses of -6.9 dB, -6.6 dB, -6.8 dB 

and -6.5 dB from ports 2, 3, 4 and 5, respectively. The measured phase offset between ports 2 

and 3 was 89.5°, between ports 3 and 4 was 90.0º, between ports 4 and 5 was 89.7° and 

between ports 5 and 2 was 90.9°. 

4.3 Antenna Performance 

The simulated and measured results for each antenna are given in Table 4.1. The 

simulated and measured S11 for each antenna is shown in Fig. 4.3 and isolation is shown in 

Fig. 4.4. The results show a frequency difference of less than 20 MHz (0.77%) between 

simulated and measured resonant frequency of each antenna. The measured bandwidth was 

slightly less than simulated by 0.3%. These differences are due to manufacturing 

discrepancies in the assembly of the four antennas and the solar panel.  

Table 4.1 Individual Antenna Results 

 
Frequency 

(GHz) 

-10dB Bandwidth 

(%) 

Simulated Solar Antenna 1 2.45 1.7 

Measured Solar Antenna 1 2.45 1.6 

Simulated Solar Antenna 2 2.46 1.8 

Measured Solar Antenna 2 2.45 1.5 

Simulated Solar Antenna 3 2.45 1.7 

Measured Solar Antenna 3 2.45 1.5 

Simulated Solar Antenna 4 2.46 1.8 

Measured Solar Antenna 4 2.45 1.6 

Simulated Copper Antenna 2.42 1.7 
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Fig. 4.3 Measured and simulated reflection coefficient for each antenna 

 
Fig. 4.4 Measured and simulated transmission coefficient between antennas 

When comparing a simulated setup using a solid copper groundplane instead of 

multicrystalline silicon, the wider bandwidth is attributed to losses in the silicon. In addition, 

there is higher resonance in the solar case due to an electrical shortening of the antenna, 

where the silicon surface is higher than the copper surface.  

Simulated and measured isolation between antennas is better than 10 dB in all cases 

for 2.4 - 2.45 GHz. The simulated axial-ratio is below 3 dB for 2.33 - 2.58 GHz. The 

measured axial-ratio is below 3 dB for 2.29 - 2.63 GHz. Axial-ratio results are shown in Fig. 

4.5. 



60 

 

 
Fig. 4.5 Measured and simulated axial ratio 

The feed line is configured for left-hand circular-polarization (LHCP). Measured 

LHCP gain for the solar antenna is 3.7 dBic at boresight while RHCP gain is -10.2 dBic. Gain 

results are shown in Table 4.2. While the antenna has slightly lower gain than CP meshed 

patch antennas [60], the IFA design offers 30% less shadowing than the meshed patch. The 

measured 3 dB beamwidth for the solar antenna was 50° in the XZ plane and 58° in the YZ 

plane. Simulated LHCP gain for the solar antenna is 4.5 dBic at boresight with 3 dB 

beamwidths of 62° in the XZ plane and 61° in the YZ plane. Simulated LHCP gain for the 

copper antenna is 4.5 dBic at boresight with 3 dB beamwidths of 63° in the XZ plane and 61° 

in the YZ plane. Radiation pattern plots are shown in Fig. 4.6. The antennas are optimised for 

integration with the solar cells, when the antenna is placed above the solid copper ground 

plane the input impedance of the antenna changes from 53 Ω to 107 Ω at 2.45 GHz resulting 

in lower gain for the copper antenna.  

 
Fig. 4.6 CP Gain XZ (left) and YZ (right) 
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Table 4.2 Antenna Radiation Results at 2.45 GHz 

Antenna LHCP 

Boresight 

Gain (dBic) 

RHCP 

Boresight 

Gain (dBic) 

Axial Ratio 

Bandwidth 

(%) 

LHCP 

3 dB Beamwidth (°) 

XZ YZ 

Meas Sol 3.7 -10.2 13.8 50 58 

Sim Sol 4.5 -34.8 10.4 62 61 

Sim Cop 4.0 -12.7 8.3 61 61 

 

4.4 Polarization Reconfigurability 

The ability to feed the four IFAs individually allows the antenna to be reconfigured to 

RHCP by reversing the feed phase offsets. The simulations in this section where carried out 

by feeding the ports of the individual antenna directly with signals of equal magnitude and 

with exact phase offsets. In reality this would not be the case as the additional length of 

transmission line required to create the desired phase offsets would result in differing signal 

magnitudes at each antenna. Fig. 4.7 shows simulated surface currents on the ground plane 

for both the LHCP and RHCP configurations. 

 
Fig. 4.7 Ground plane currents in LHCP (Left) and RHCP (Right) 

Linear polarizations can be achieved by feeding two opposing antennas with a 180° 

phase offset while the adjacent antennas remain inactive. Simulated results show the antenna 

achieves 3 dB beamwidths of 51° and 114° in linear configurations and Fig. 4.8 shows the 

radiation patterns of two perpendicular linear polarizations. 
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Fig. 4.8 Linear Polarization Radiation Patterns 

 

45° Slanted polarizations are possible by feeding two adjacent antennas with a 180° 

phase offset while the opposing antennas remain inactive. Simulated results show that the 

antenna has beamwidths of 66° and 96° in the slanted polarizations however due to the off 

centre location of the antennas there is a peak gain away from the active antennas, shown in 

Fig. 4.9.  

  

  
Fig. 4.9 45° Slanted Radiation Patterns 
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4.5 Beam Switching 

Beam switching can be implemented in linear polarizations by changing the phase 

offset between the two antennas thus increasing coverage in linear polarizations, shown in 

Fig. 4.10. 

 
Fig. 4.10 Linear Polarization Beam Switching Radiation Patterns 

The interaction between the two antennas can be seen in the e-field patterns shown in 

Fig. 4.11. With 180° offset the e-fields are between the two antennas resulting in a focused 

radiation pattern. At 0° offset the antennas interact primarily with the ground plane resulting 

in a divergent radiation pattern. 

 
(a) Linear Polarized E-Field Δφ = 180° 
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(b) Linear Polarized E-Field Δφ = 90° 

 
 (c) Linear Polarized E-Field Δφ = 0° 

Fig. 4.11 Linear Polarization E-Field Plots 

 

Beam switching can also be implemented while maintaining circular-polarization 

provided the phase of the antennas feeds are Ant 1 = 0°, Ant 2 = (90° - Δφ), Ant 3 = (180° -

 2Δφ) and Ant 4 = (270° - Δφ). Radiation plots of beam switching along the XZ axis are 

shown in Fig. 4.12. 

 
Fig. 4.12 Circular-Polarization Beam Switching Radiation Patterns 
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The beam steers in a similar fashion to the linear pattern with a divergent pattern at 

90° resulting in a 121° XZ beamwidth. The axial ratio pattern is much narrower than the 

radiation pattern however it does follow the same orientation in the XZ plane during beam 

switching as shown in Fig. 4.13.  

 
Fig. 4.13 Circular-Polarization Beam Switching Axial Ratio 

4.6 Application: Weather Balloon 

Low-altitude airborne communication nodes are envisaged for improved wireless 

communications over remote areas and to support emergency services responding to large 

scale natural disasters [63]. Short-term systems can be deployed rapidly to the lower 

troposphere, while longer-term systems are placed in the upper troposphere or stratosphere. 

Networked nodes are to communicate with each other and with ground users as shown in Fig. 

4.14.  

Entirely solar powered, each node makes use of increased solar energy availability at 

altitude to charge lithium batteries for low light conditions [64]. TETRA, WiFi and WiMAX 

radios have been tested on tethered balloons [65], with TETRA achieving 9 km but with WiFi 

achieving higher data rates at 1 km. The proliferation of WiFi enabled consumer devices also 
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makes it a viable aid in emergency situations. Airborne antennas can be randomly oriented, 

so circularly-polarized (CP) devices are considered. 

 
Fig. 4.14 Communication between Aerial Nodes and Ground Based Users 

The CP solar antenna discussed in this chapter has potential for use in node to node 

communication. The antenna size in relation to a weather balloon used in [63] can be seen in 

Fig. 4.15. 

 
Fig. 4.15 CP Antenna Integrated with Aerial Node 

The six antenna arrays rotated 60° apart would provide 360° coverage and allow 

polarization diversity to improve signal quality between nodes. The solar array would have a 
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total power output of ~72 W with the possibility to locate additional solar cells between the 

antenna arrays. As node location data would be held by all nodes it would be possible to 

reduced power consumption by utilising the most efficient path between nodes rather than 

transmitting an omnidirectional pattern.  

4.7 Conclusion  

The integration of four low-profile IFAs, for circular-polarization, with a photovoltaic 

solar panel is reported. The antennas are located between solar cells in a solar panel and 

avoid any difficult modification of the solar cells. The configuration ensures 100% solar cell 

irradiation due to directly facing light sources, while the low profile antenna height minimises 

shadowing due to oblique angle light sources. The colder temperatures at high altitudes 

maximise the output power of the high power c-Si solar cells which become less efficient as 

their temperature rises.   

Wider bandwidths compared to antennas above a solid copper ground plane illustrate 

the effect of increased losses due to the interaction of electric fields with the silicon solar cell. 

Bandwidths can be further increased with higher antennas. 

Beam switching and polarization changing can be achieved by adjusting the phase 

offset between antenna elements, improving signal strength on mobile platforms whose 

motion can result in fading of particular polarisations. Larger beamwidths allow the antenna 

to cover a larger area than other CP integrations increasing the probability of achieving an RF 

link while maximising solar generation. 
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5 AMORPHOUS SILICON SOLAR VIVALDI 

Wireless devices capable of harvesting energy from their environments are desirable 

to prolong the life of batteries and reduce maintenance costs [66]. Scavenging solar energy 

can be cheaply achieved cheaply using a-Si panels with output voltages greater than 3 V as 

they don’t require a lossy boost converter however cell efficiencies around 10% are low. 

The level of scavenged power required for wireless sensors continues to drop as 

MCUs become more efficient. In [67], a wireless temperature sensor tag with an a-Si cell 

power source was presented. The tag consisted of a 2.43 GHz antenna to receive control 

commands and an ultra-wideband (UWB) antenna which acted as a backscatterer. The UWB 

antenna had a load which was adjusted relative to the temperature thus the backscattered 

signal was modified relative to the measured temperature. The sensor had a range of 150 cm 

with a current consumption min of 4 µA in standby and a max of 82 µA during calibration. 

These power requirements can easily be achieved by a-Si solar cells which offer advantages 

of cheaper production in a compact panelised form yielding readily useable voltages, whereas 

c-Si cells require additional assembly to achieve desirable voltages and waterproofing. 

This chapter will discuss a Vivaldi antenna cut from a panel of a-Si solar cells 

designed for wireless communications, with complementary solar energy harvesting, or to act 

as a rectenna for dual-energy harvesting. The slot was located between two strings of solar 

cells in the panel to minimise the loss of photovoltaic material.  

A Vivaldi slot enables a wide bandwidth covering GSM and WLAN bands this 

facilitating wireless scavenging to complement stored solar energy during hours of darkness 

and supplement the supply during daylight. Wireless energy scavenging [68] from 0.35 - 3 

GHz showed 8 bands that sum to 195 MHz which could support low-power sensor devices. 

While scavenged power was small [69], low-powered microcontrollers (e.g. 24FJ series PIC) 

can maintain a deep sleep mode without data loss using 132 nW [70]. 
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5.1 Antenna Configuration 

A coplanar Vivaldi antenna was cut from a 0.6 W a-Si panel of ten solar cells 

arranged in a series of 5 pairs of parallel connected cells, shown in Fig. 5.1 [71]. The 400 nm 

thick a-Si layer of each cell was 71 × 18 mm and separated from other cells by a 2 mm gap 

[72]. Each cell had 7 silver electrodes on the front contact. The electrodes are 0.5 × 16.5 mm 

and separated by 9.5 mm. Rear contacts, 19.9 × 146 mm, provided parallel connections 

between cells and were isolated from adjacent contacts by a 0.1 mm gap. The low cost 

flexible panels were manufactured for one of many different power configurations and the 

layout enabled various antenna shapes. End edge contacts on the panel were made from tin 

coated copper plate. The entire panel was encapsulated by flexible polymide layer. 

 
Fig. 5.1 Solar Vivaldi antenna (left) and rear-side transmission line (right) 

Equation (1) describes the exponential curve of the Vivaldi antenna where 𝑥0 was the 

first point of the curve and 𝑔𝑟 was the rate of change in the curve [73]. 

𝑥 = 𝑥0 ∗ 𝑒𝑥𝑝(𝑔𝑟 ∗ 𝑡) 𝑓𝑜𝑟 𝑦𝑚𝑖𝑛 < 𝑡 < 𝑦𝑚𝑎𝑥  (1) 

 The antenna was fed with a 50 Ω microstrip transmission line printed on the 

FR-4 substrate used to support the solar panel. The transmission line was terminated in a 

microstrip-to-slot-line transition between a quarter wave radial stub and quarter wave circular 



70 

 

slot. Table 5.1 summarises preliminary simulations with CST Microwave Studio that 

optimised the stub length to support a band lower than GSM-900 while minimising a circular 

slot in a copper layer. Having built the simulation model to include the entire solar panel and 

antenna, final dimensions were optimised for the Vivaldi slot. 

Table 5.1 Simulated Microstrip-to-slotline transition results 

Stub Length 
Lower -10 dB limit 

(GHz) 

Cell Area Removed 

(%) 

S11 at 

0.95 GHz 

(dB) 

1.87 GHz 

(dB) 

2.45 GHz 

(dB) 

10 mm 0.98 2.29 -8.9 -22.4 -10.2 

12 mm 0.84 3.49 -16.8 -21.1 -9.8 

14 mm 0.74 4.93 -28.4 -17.5 -9.8 

 

The simulated solar Vivaldi antenna was designed with the minimal amount (3.6%) of 

silicon removed. The slot location was varied to 35 mm from the symmetrical centre between 

the cells with a loss of 5% of a-Si. While a 5 mm offset had minimal impact, the 35 mm 

offset reduced the bandwidth by 294 MHz to remove the 900 GSM band. The silicon-

optimised features were copied in double-sided copper on an FR-4 substrate for performance 

benchmark. 

5.2 Solar Performance 

Solar measurements were carried out using a 1450 Lux light source positioned 

960 mm from the solar panel. The solar Vivaldi antenna has been compared to an intact solar 

panel. The intact solar panel was also supported on an FR-4 substrate to prevent any 

differences in thermal properties. The outline of the Vivaldi slot is shown imposed on the 

intact solar panel in Fig. 5.2 with the removed sections of silicon marked in green.  
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Fig. 5.2 Sections removed from solar cell 

As the Vivaldi slot was centred between adjacent solar cells it removes equal amounts 

of silicon from each cell and splits the panel into two strings of series connected cells. 

Section A removed 14.40% of the silicon from the affected cell. Section B removed 1.71% 

and section C was 1.89%. This resulted in a loss of 3.6% of the total available silicon. As 

section A was the largest cut in a single cell, thereby setting the current limit of that string. 

The maximum power point of the full solar cell was 51.7 mW (4.25 V × 12.2 mA). 

With the strings reconnected, the maximum power point of the solar Vivaldi antenna was 

27.4 mW (2.67 V × 10.3 mA). This was a 15.57% decrease in current at the maximum power 

point which was proportionate with the percentage of material removed. Measured solar 

power outputs are shown in Fig. 5.3.  
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Fig. 5.3 Solar performance results 

5.3 Antenna Performance 

The S11 results, simulated efficiencies and gain data for the measured and simulated 

antennas are summarised in Table 5.2. Plot comparisons of S11 are shown in Fig. 5.4 and a 

comparison between measured boresight gain for the solar and copper Vivaldis are shown in 

Fig. 5.5. 

Table 5.2 Vivaldi Antenna Performance 

Antenna 
Min S11 

(GHz) 

Bandwidth 

(%) 

Efficiency Boresight Gain (dBi) 

0.95 GHz 1.87 GHz 2.45 GHz 0.95 GHz 1.87 GHz 2.45 GHz 

Meas a-Si  0.938 127 N/A N/A N/A 0.04 3.91 5.28 

Sim a-Si 0.921 123 84% 78% 70% 0.31 4.20 4.52 

Meas Cu 0.576 159 N/A N/A N/A 1.05 3.84 5.46 

Sim Cu 0.752 148 95% 89% 77% 0.92 4.66 5.19 

 

 
Fig. 5.4 Measured and Simulated S11 
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Fig. 5.5 Measured Boresight Gain 

The S11 response, the efficiency and the gain values are lower for the solar antenna 

when compared to the copper antenna suggesting increased losses. Simulated results show 

that some of this loss is due to current flow along the edges of intersections between the solar 

cells as shown in Fig. 5.6. 

 
Fig. 5.6 Antenna Surface Currents for Solar (Left) and Copper (Right) 

The Vivaldi S11 was also measured under various levels of insolation. Measured light 

intensity was 79 Lux and cell surface temperature was 20°C with the light was off. With the 

light on for a few seconds, the light intensity was 25300 Lux and the surface temperature was 

21°C. After 5 minutes with the light on, the light intensity was 26500 Lux and the surface 
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temperature was 40°C. The measured S11 is shown in Fig. 5.7, no significant variation is 

observed after the light source is turned on but variation is observed as the cell heats up. 

 
Fig. 5.7 Vivaldi Antenna S11 for Different Insolation Levels 

The XZ beamwidth is narrower than the X-Y beamwidth for all frequencies. In 

addition the beamwidths narrow as frequency increases with the lower frequency being 

omnidirectional in the X-Y plane. Radiations plots for the antenna at 950 MHz, 1.87 GHz and 

2.45 GHz are shown in Fig. 5.8, Fig. 5.9 and Fig. 5.10 respectively. 

 
Fig. 5.8 Solar Vivaldi Radiation pattern at 950 MHz 
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Fig. 5.9 Solar Vivaldi Radiation pattern at 1.87 GHz 

 
Fig. 5.10 Solar Vivaldi Radiation pattern at 2.45 GHz 

5.4 Energy Scavenging Potential 

An 8-stage Villard cascade voltage multiplier circuit was designed to test the energy 

scavenging potential of the solar Vivaldi. The Villard cascade configuration is shown in Fig. 

5.11 where the C1 = 100 pF, R1 = 10M Ω and D1is a HSMS-268C-TR1G. A 100 pF storage 

capacitor and 10M Ω load were chosen to ensure quick charge and discharge during testing.  
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Fig. 5.11 Villard Cascade Voltage Multiplier Circuit 

A Hewlett Packard 8648C signal generator with a Mini-Circuits ZFL-2500 31 dB 

amplifier and a horn antenna located 1 m from the solar Vivaldi was used for testing. The 

system was measured between the signal generator and the horn, giving a gain of 31 dB at 

950 MHz, 32 dB at 1.87 GHz and 31 dB at 2.45 GHz. The horn antenna gain was 9.6 dBi at 

950 MHz, 10.8 dBi at 1.87 GHz and 12.4 dBi at 2.45 GHz. The voltage multiplier output was 

measured in an anechoic chamber to minimise reflection and the inverse-square law was used 

to calculate the power density (PD) at the receive antenna, results are shown in Table 5.3. It is 

clear that with an incident power density of 1.6 µW/cm
2
 at 950 MHz, 2.7 µW/cm

2
 at 

1.87 GHz or 17.4 µW/cm
2 

at 2.45 GHz the rectenna can exceed the 1.8 V and 132 nW 

required for a microcontroller [70] to maintain deep sleep mode. 

Table 5.3 Measured DC Output for Different Signal Generator Powers 

Freq 

(GHz) 

-17.5 dBm -15 dBm -12.5 dBm -10 dBm 

PD 

(µW/cm
2
) 

Voltage 

(V) 

PD 

(µW/cm
2
) 

Voltage 

(V) 

PD 

(µW/cm
2
) 

Voltage 

(V) 

PD 

(µW/cm
2
) 

Voltage 

(V) 

0.95 1.6 
2.09 V 

(0.44 µW) 
2.9 

3.25 V 

(1.06 µW) 
5.1 

4.56 V 

(2.08 µW) 
9.1 

5.53 V 

(3.06 µW) 

1.87 2.7 
2.01 V 

(0.40 µW) 
4.8 

2.92 V 

(0.85 µW) 
8.5 

3.97 V 

(1.57 µW) 
15.2 

4.78 V 

(2.28 µW) 

2.45 3.1 
0.83 V 

(0.06 µW) 
5.5 

1.27 V 

(0.16 µW) 
9.8 

1.73 V 

(0.30 µW) 
17.4 

2.06 V 

(0.42 µW) 

 

5.5 Ideal Solar Vivaldi 

If the solar Vivaldi antenna was produced commercially, the solar cell could be 

redesigned to ensure each cell in the panel had an equal volume of a-Si. In [74], a custom a-

Si:H solar cell was manufactured to conform to the shape required for a slot antenna. Laser 

etching of the solar cell layers in certain patterns make it possible to achieve resonant shapes 
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without requiring modification to existing production equipment [75]. This would optimize 

the cells to suit the available space of the solar Vivaldi antenna and improve the output power 

of the final solar panel. 

It is possible to simulate an idealised scenario where the solar Vivaldi has been 

designed to optimise both solar and RF performance. The DC negative connection between 

adjacent panels has been restored with the added benefit of providing a continuous metallic 

strip along the shape of the Vivaldi slot as shown in Fig. 5.12. 

 
Fig. 5.12 CST Model of Idealised Solar Vivaldi 

Each cell now has a surface area of 1090 mm
2
 compared to the 1278 mm

2
 area of a 

cell in a conventional solar panel.  Interpolating power output based on a-Si surface area 

estimates a maximum power output of ~0.51 W, 15% lower than a conventional a-Si panel 

covering the same panel area. 

The antenna is resonant from 0.861 GHz with a bandwidth of 125%. S11 results are 

shown in Fig. 5.13 and antenna performance results can be found in Table 5.4. The minimum 

S11, efficiency and gain values all fall between the values of the copper Vivaldi and the solar 

Vivaldi discussed in Section 7.1 which would be expected due to the continuous metallic 

strip along the Vivaldi slot. Fig. 5.14 shows reduced current flow along the cell intersection 

of the ideal Vivaldi compared to prototype Vivaldi shown in Fig. 5.6.  
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Fig. 5.13 Idealised Solar Vivaldi S11 Results 

Table 5.4 Ideal Antenna Performance 

Frequency Efficiency Boresight Gain (dBi) XY Beamwidth XZ Beamwidth 

0.95 GHz 87% 0.493 151.7° 360.0° 

1.87 GHz 81% 4.277 70.0° 169.7° 

2.45 GHz 71% 4.667 51.2° 102.0° 

 

 
Fig. 5.14 Idealised Solar Vivaldi Surface Currents 

As the a-Si solar panels are manufactured in reels there is significant opportunity to 

cheaply manufacture multi element arrays making it possible to increase the narrow XY 

beamwidth coverage by implementing beam switching. A simulation was carried out in 

which two solar Vivaldi’s are manufactured alongside each other as shown in Fig. 5.15. 
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Fig. 5.15 Solar Vivaldi Array Configuration 1 

Isolation between the two antennas is better than 10 dB from 0.9 GHz and better than 

17 dB from 1.6 GHz, shown in Fig. 5.16.  

 
Fig. 5.16 Solar Vivaldi Array Configuration 1 S11 

The array has a narrower XY beamwidth than the individual antenna however this can 

be overcome by implementing beam switching, shown in Fig. 5.17, Fig. 5.18 and Fig. 5.19. 
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Fig. 5.17 Solar Array Configuration 1Radiation pattern at 950 MHz 

 
Fig. 5.18 Solar Array Configuration 1Radiation pattern at 1.87 GHz 

 
Fig. 5.19 Solar Array Configuration 1Radiation pattern at 2.45 GHz 
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Antenna spacing within the array can be adjusted by adding additional solar panels 

between the antennas printed on the reel. A model including one conventional five cell a-Si 

panel located between two solar Vivaldi’s was simulated as shown in Fig. 5.20.  

 
Fig. 5.20 Solar Vivaldi Array Configuration 2 

The addition of the extra solar panel increases solar power output to ~1.32 W and 

improves the isolation by an average of 1.7 dB between 0.6 GHz and 2.8 GHz, shown in Fig. 

5.21. 

 
Fig. 5.21 Solar Vivaldi Array Configuration 2 S11 

However this also results in narrower main beams and additional side lobes, shown in 

Fig. 5.22, Fig. 5.23 and Fig. 5.24. 
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Fig. 5.22 Solar Array Configuration 1Radiation pattern at 950 MHz 

 
Fig. 5.23 Solar Array Configuration 1Radiation pattern at 1.87 GHz 

 
Fig. 5.24 Solar Array Configuration 1Radiation pattern at 2.45 GHz 
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5.6 Application: Building Sun Shade Integration 

Crystalline silicon solar cells are currently used in buildings to create sun shades 

requiring expensive assembly and glass structures as shown in Fig. 5.25. 

 
Fig. 5.25 Sun Shades incorporating c-Si Solar Cells [76] 

Solar Vivaldi arrays could be easily added to existing louvered sun shades commonly 

found on large commercial and public buildings. Fig. 5.26 shows the extensively louvered 

facade of Dublin airport with an inset showing the concept of a solar Vivaldi antenna 

integrated into a large a-Si solar panel located on a louver. 

 
Fig. 5.26 Concept of Installing a-Si Solar Cells on Existing Louvered Facades [77] 
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5.7 Conclusions 

An ultra-wideband (0.938 - 2.45 GHz) Vivaldi antenna was made for the first time 

from amorphous silicon (a-Si) in order to exploit panelised solar cells that produce readily 

useable voltages and sufficient power for compact wireless sensors. 

The wide bandwidth included GSM and WLAN channels to support remote device 

locations. The pattern beamwidth exceeded 110º in at least one plane, which was superior to 

other a-Si solar antennas and enables improved RF transmission, solar generation and 

wireless energy scavenging consecutively. 

Simulated and measured results illustrated how the narrow spacing between the rear 

aluminium contacts was sufficiently smaller than a wavelength to support stable performance. 

The antenna feed on the rear of the cell realised current flow predominantly on the larger rear 

contacts rather than an induced resonance on the more resistive front lattice. This 

demonstrates that a-Si based solar antennas covering wide bandwidths can be cheaply 

prototyped from of the shelf cells.   

Simulated results reveal that the solar antenna is only 10% less efficient than an 

equivalent copper antenna and measured gain was 1 dB less at 950 MHz. Increased losses 

were attributed to the silicon, encapsulating material and current flow at the spaces between 

cells. The measured gain values are ~1 dB higher than other ultra wideband solar antennas. 

Energy scavenging calculations showed the potential to maintain a microcontroller in 

deep sleep mode while energy is stored for later use. 

The removal of a-Si for the Vivaldi slot was limited to 3.6% of the photosensitive 

section and shows that a Vivaldi design can improve on previous a-Si solar antennas. The 

27.4 mW measured maximum power point of the solar Vivaldi was 47% lower than the intact 

panel but would comfortably power a wireless sensor requiring 55 µW. Manufacture 
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incorporating a Vivaldi slot and with equal areas of silicon in each cell would easily improve 

power output thus increasing potential sensor activity. Simulations have shown that an 

idealised solar Vivaldi would have superior bandwidth, efficiency and gain performance 

improving range or reducing power requirements for an amplifier.  

The a-Si solar panel manufacturing techniques would allow the antennas to be 

manufactured cheaply into solar array. In addition it has been demonstrated that solar antenna 

arrays capable of implementing beam switching are also a possibility. This would allow large 

arrays to be cheaply designed into a structure for example a louvered sunshade on the exterior 

of a building without presenting a visual pollutant.  
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6 DYE-SENSITISED SOLAR DIPOLE 

Indoor-based silicon (Si) solar cells are outperformed by dye-sensitised (DS) solar 

cells which have wider acceptance angles and better absorption capacity for diffuse sunlight 

and fluorescent light [78]. While crystalline Si-cells are more efficient, DS-cells are cheaper 

to manufacture and can be printed onto flexible conductive plastic layers for device 

integration. Use indoors mitigates risk of expansion where liquid electrolytes in DS-cells 

might fracture the packaging in extreme temperatures. Furthermore, it has been shown that 

power storage capabilities of DS-cells could eliminate the additional need for a battery [79]. 

The use of DS-cells in antenna design has not been attempted in the literature to date 

however crystalline and amorphous silicon solar cells have been integrated with dipole 

antennas. A printed copper dipole on FR-4 substrate was suspended over a 3 W 

polycrystalline Si-cell ground plane which supported the feed line and acted as an antenna 

reflector [80]. While it had sufficient power for a wireless sensor, the dipole height above the 

Si-cell produced a large device volume that was less suited to indoor applications. A folded 

dipole antenna was constituted with emitter-wrap-through Si-cells, as the radiating elements 

and a solar concentrator as the reflector [81]. The concentrator contributed to a high 11.1 dBi 

gain and helped the Si-cell generate 73.7 mW under a 1000 W/m
2
 light source. Similarly, the 

solar antenna had a large device volume due to the reflector and the directive radiation 

pattern was less suited to indoor applications. An ultra-wideband dipole made from 

amorphous Si (a-Si) cells covered 3 - 10 GHz [82]. The a-Si antenna had a 0.04 W capacity 

under a 1000 W/m
2
 light source. While the significantly smaller design avoided a large 

ground plane reflector, a-Si-cells are less efficient than DS-cells. 

A challenge while integrating solar cells and antennas is to quantify how various cell 

materials or metallic properties affect the antenna performance. The orientation of a patch 

antenna above the anode lattice of a polycrystalline Si-cell was shown to result in differing 
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levels of exposure to the lossy silicon and to cause a frequency shift and gain reduction [44]. 

Radiation coupling between a crossed-slot antenna and a panel of a-Si-cells [84] hosted on its 

ground plane was minimised by optimising the cell area while at the same time, it reduced the 

solar footprint.  

This chapter discusses the first dye-sensitised solar cell antenna which was designed 

to assess radiating performances where small unobtrusive devices are required. Given that the 

solar performance does not require metallic lattices, the radiating performance is less 

sensitive to material proximities and orientation. The radiation pattern, of a dipole in this 

instance (shown in Fig. 6.1), can be configured to be a toroidal shape while receiving light 

from opposite sides of the antenna. While a large balun feed was chosen for the proof of 

concept, a balanced transceiver circuit would connect directly for good performance. The 

antenna balun provides a series connection between the two solar cells of the dipole.  

Three stages of the solar cell were investigated, a dipole made from plain Indium Tin 

Oxide (ITO) slides, a dipole made from ITO slides with a layer of Titanium Dioxide (TiO2) 

and a dipole made from complete solar cells. A copper dipole of identical dimensions is used 

for comparison. 

 
Fig. 6.1 Rear of dye-Sensitised Solar Dipole Antenna 
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6.1 Dye-Sensitised Solar Cell Manufacture 

A dye-sensitised solar cell consists of two transparent electrodes made from glass 

slides with a thin conductive layer of ITO, shown in Fig. 6.2.  

 
Fig. 6.2 Dye-Sensitised Solar Cell Structure 

The manufacturer sintered the Titanium Dioxide to the glass slide by spreading TiO2 

paste on one slide and heating it to 450°C for 20 minutes to make an anode, shown in Fig. 

6.3.  

 
Fig. 6.3 TiO2 Layer Preparation [85] 

TiO2 is not sensitive to visible light so dye molecules were added using Hybiscus dye 

to allow the TiO2 to absorb energy from visible light, shown in Fig. 6.4.  

 
Fig. 6.4 Sensitising of TiO2 Layer [85] 

Pencil lead was used to coat the opposite slide with carbon to make the cathode, 

shown in Fig. 6.5.  
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Fig. 6.5 Adding the Carbon Layer [85] 

Silicon glue was used to seal three sides between two glass slides while spacing was 

controlled with temporary shims of 0.4 mm thick acrylic. With the shims removed, an 

electrolyte for charge transport was poured between the slides and the cell was sealed. Four 

dye-sensitised solar cells were prototyped. 

6.2 Antenna Configuration 

The unbalanced feed to balanced dipole was transformed with a microstrip via-hole 

balun. Provisionally, the balun was λ/4, as were the dye-sensitised solar cells. The final 

length was optimised using CST Microwave Studio to take account of the electrically-wide 

DS-cell dipole elements. Balun dimensions are shown in Fig. 6.6, where W1 = 5.0 mm, 

W2 = 10.6 mm, W3 = 22.5 mm, W4 = 1.0 mm, W5 = 10.6 mm, H1 = 10.0 mm, H2 = 56.6 mm 

and H3 = 6.0 mm. Copper tape connected the printed copper balun with the ITO-doped glass. 

DS-cell material properties are shown in Table 6.1. 

 
Fig. 6.6 Copper Balun Structure 



90 

 

Table 6.1 Solar Cell Material Properties 

Material Dielectric Constant Conductivity Reference 

Glass Slide 6.7 N/A [86] 

ITO N/A 10
-6

 S/m [87] 

TiO2 85 N/A [88] 

Electrolyte N/A 3 × 10
-4

 S/m [89] 

Silicon Sealant 2.8 2.5 × 10
-14 

S/m [90] 

6.3 Solar Performance 

A 1450 Lux tungsten halogen directed light source located 960 mm from the solar cell 

was used to evaluate output power performance. Table 6.2 shows short-circuit current (Isc) 

and open circuit voltages (Voc) for various sample DS-cells and the solar-antenna. Each side 

of the DS-cells were measured facing the light source, when cold and at the 5 minute 

exposure time. The considerable variance in Voc and Isc between cells was attributed to wider 

manufacturing tolerances due to limited laboratory equipment. The DS-cells produced the 

highest power when the TiO2 face was exposed to the light source. The average carbon face 

Voc was 18% lower for a cold DS-cell and 32% lower for a cell at the 5 minute exposure. The 

DS-cells in the antenna were in series so that one TiO2 face and one carbon face was exposed 

to the light source simultaneously. Maximum performances for dye-sensitised solar cells are 

Voc = 0.744 V and Isc = 22.47 mA per cm
2
 of photovoltaic material with a 71.2% fill factor 

[14]. With maximum values the DS-cell dipole would produce ~119 mW, which is adequate 

power for a Tyndall Mote wireless sensor with an average power consumption of 133 µW 

[91]. 

Table 6.2 Measured Solar Cell Results 

Solar Cell 

Under Test 

Exposed 

Face 

Cold Cell After 5 mins exposure 

Voc (V) Isc (mA) Voc (V) Isc (mA) 

Solar Cell 1 TiO2 0.328 0.055 0.245 0.049 

Solar Cell 1 Carbon 0.270 0.015 0.165 0.012 

Solar Cell 2 TiO2 0.351 0.101 0.258 0.091 

Solar Cell 2 Carbon 0.285 0.028 0.177 0.020 

Solar Cell 3 TiO2 0.342 0.100 0.251 0.083 

Solar Cell 3 Carbon 0.281 0.025 0.166 0.017 

Solar Cell 4 TiO2 0.326 0.050 0.240 0.046 

Solar Cell 4 Carbon 0.270 0.014 0.166 0.011 

Solar Antenna Both 0.565 0.034 0.410 0.034 

Solar Antenna Both 0.502 0.035 0.405 0.028 
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6.4 Antenna Performance 

Measured and simulated antenna performance results are summarised in Table 6.3. 

S11 plots are shown in Fig. 6.7. The measured copper dipole was resonant at 1.32 GHz. In 

order to understand how the various components impact the antenna radiation, various stages 

were assessed. The plain ITO antenna was resonant at 1.24 GHz due to the high dielectric 

constant of the glass slide. The addition of high dielectric TiO2 had minimal impact on the 

antenna performance since current flow was primarily on the periphery of the glass slide. 

Introduction of the rear glass slide further lowered the frequency to 1.11 GHz due to x-axis 

offsets of the paired glass slides that were necessary to expose the electrical contacts of the 

antenna. Additional bandwidth widening was attributed to losses in the rear glass slide.  

Table 6.3 Measured and Simulated Antenna Performance 

Antenna Frequency 

(GHz) 

Bandwidth 

(%) 

Efficiency 

(%) 

Boresight Gain 

(dBi) 

Meas Copper 1.32 21.2  1.0 

Sim Copper 1.31 23.9 89 1.2 

Meas ITO Slide 1.24 26.3  -1.9 

Sim ITO Slide 1.21 25.7 41 -1.9 

Meas ITO + TiO2 1.19 24.3  -2.1 

Sim ITO + TiO2 1.21 26.8 42 -1.9 

Meas Full Cell 1.11 29.1  -1.5 

Sim Full Cell 1.08 27.8 44 -1.5 

 

 
Fig. 6.7 Measured and Simulated S11 Results 
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Simulations assessed the range of material properties of the DS-cell components and 

are presented in Table 6.4. The plain ITO antenna was used to investigate the dielectric 

constant of the glass and the conductivity of the ITO layer. Fig. 6.8 (a) showed that the range 

of ITO conductivity was immaterial to the antenna performance. An increased dielectric 

constant of the glass lowered the resonant frequency by 7.5 MHz and widened the bandwidth 

by 6 MHz, as would be expected due increased loss in this material.  

Table 6.4 Measured Solar Cell Results 

 
ITO σ 

(S/m) × 10
5
 

Glass  

εr 

TiO2  

εr 

Si 

εr 

Si σ 

(S/m) × 10
-14

 

Electrolyte σ 

(S/m) × 10
-4

 

A 10
 

6.7 N/A N/A N/A N/A 

B 5 6.7 N/A N/A N/A N/A 

C 20 6.7 N/A N/A N/A N/A 

D 10 4 N/A N/A N/A N/A 

E 10 10 N/A N/A N/A N/A 

F 10 6.7 85 N/A N/A N/A 

G 10 6.7 10 N/A N/A N/A 

H 10 6.7 45 N/A N/A N/A 

I 10 6.7 85 2.8 2.5
 

3 

J 10 6.7 85 2.3 2.5 3 

K 10 6.7 85 3.3 2.5 3 

L 10 6.7 85 2.8 1.0 3 

M 10 6.7 85 2.8 6.1 3 

N 10 6.7 85 2.8 2.5 2 

O 10 6.7 85 2.8 2.5 4 

 

 

 
(a) – Reflection Coefficient Variation of ITO Antenna 
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(b) – Reflection Coefficient Variation of ITO + TiO2 Antenna 

 
 (c) – Reflection Coefficient Variation of Full Solar Antenna 

Fig. 6.8 Prototype Dipole Reflection Coefficient Variation 

 

The ITO + TiO2 antenna assessed the effects of varying the TiO2 dielectric constant, 

shown in Fig. 6.8 (b). The TiO2 layer dielectric constant 10 ≤ εr ≤ 85 had no significant 

impact on the antenna performance since it was outside the main current path. 

The full DS-cell antenna assessed the dielectric constant and conductance of the 

silicon sealant and the conductance of the electrolyte. Fig. 6.8 (c) showed that these materials 

have minimal impact on the antenna performance. Closer inspection of the surface currents 

on these material layers revealed that there is very little current flow on the TiO2 layers, 
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electrolyte and silicon sealant, shown in Fig. 6.9. This suggests that the two ITO slides couple 

capacitively. This was confirmed with a simulation of the full DS-cell antenna without these 

materials. The complete removal of these materials caused a limited downward frequency 

shift of 5 MHz and a bandwidth reduction of 4.6 MHz. 

 
Fig. 6.9 Current Flow on Full Solar Antenna 

The DS-cell dipole S11 was also measured under various levels of insolation. 

Measured light intensity was 140 Lux and cell surface temperature was 20°C with the light 

was off. With the light on for a few seconds, the light intensity was 26900 Lux and the 

surface temperature was 22°C. After 5 minutes with the light on, the light intensity was 

27300 Lux and the surface temperature was 36°C. The measured S11 is shown in Fig. 6.10. 

No significant variation is observed after the light source was turned on or after five minutes 

exposure to the light source. 
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Fig. 6.10 DS-Cell Dipole S11 for Different Insolation Levels 

There were three potential DS-cell configurations in the completed solar antenna: (a) 

One TiO2 slide and one carbon slide connected to the balun; (b) both carbon slides connected 

to the balun, and (c) both TiO2 slides connected to the balun. Configuration (a) was 

manufactured for a higher output voltage and easier power management. Configurations (b) 

and (c) were simulated and demonstrated insignificant impact on S11 and radiation pattern 

results.  

The measured beamwidths for the antenna were 86°, 84°, 89° and 86° for the Copper, 

ITO, ITO + TiO2 and complete solar antenna respectively. The measured YZ beamwidths for 

the antenna were 360°, 307°, 308° and 360° for the Copper, ITO, ITO + TiO2 and complete 

solar antenna respectively. Large beamwidths are essential for a solar antenna to ensure the 

antenna can be setup to maximise both solar insolation and the wireless link. Radiations 

patterns are shown in Fig. 6.11. 
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Fig. 6.11 Radiation Pattern XY (left) and YZ (right) 

6.5 Application: Wireless Keyboard 

Solar cells that are optimized to absorb indoor ambient light can power small wireless 

consumer electronic devices such as keyboards [92] or sensors to monitor buildings [93] 

where costs of wiring installation are avoided. Wireless keyboards can operate on lower than 

1.5 V and are used intermittently with a max current of 3 mA during use [94]. 

Laser ablation allows the antenna structure to be scribed into the ITO layer of a 

transparent substrate [95]. A dye-sensitised solar bow tie dipole antenna for use in a wireless 

keyboard can be designed to cover all the Bluetooth channels, simulated S11 results are shown 

in Fig. 6.12.  

 
Fig. 6.12 Bow Tie Dipole in Wireless Keyboard S11 
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Fig. 6.13 shows the unobtrusive antenna structure located above the number pad on a 

keyboard. A 4 × 4 mm black plastic square is located above the antenna to represent a 

QFN20 IC package giving an impression of the space required for a system using a radio 

transceiver with a balanced output.  

 
Fig. 6.13 Solar Bow Tie Dipole in Wireless Keyboard 

The toroidal radiation pattern increases the chances of achieving a wireless link as the 

user is most likely to face the device they are controlling but the keyboard may not be on a 

flat surface. Radiation patterns for the solar bow tie antenna are shown in Fig. 6.14. 

 
Fig. 6.14 Keyboard Dipole Radiation Pattern XY (left) and YZ (right) 
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The bow tie dipole has a photosensitive area 1.04 cm
2
 meaning that there is potential 

to produce 12.37 mW using state of the art dye sensitised solar cell technology, enough to 

power the device and store energy for later use.  

6.6 Conclusions 

This chapter reports the first antenna constituted from Dye-Sensitised solar cells. The 

method enabled increases to solar footprints to support miniaturised wireless sensors for 

indoor use. The proof of concept dipole configuration examined the antenna performance in 

terms of the material properties of the solar cell. While the prototype DS-cell antenna had a 

19 µW power output limit, Sharp photovoltaics R&D lab could improve the manufacturing 

process and material properties to yield around a 119 mW output from the same footprint.  

The prototype dipole comprised glass packaging and silicon sealant. Simulated 

models showed that the glass dominated the impact on the antenna performance, while the 

other solar cell materials had negligible effects. Alternative transparent packing could be 

selected to reduce complex material losses. The toroidal radiation pattern was not subject to 

metallic components that are otherwise found on silicon solar cells. 

In addition, the ITO and TiO2 conductive layers and the electrolyte layers could be 

sintered and packaged into proprietary shapes to facilitate antenna resonance. This would also 

take account of various feed options and allow for more compact designs. Simulated results 

have shown that a curved bow tie dipole structure formed from DS-cell materials and sealed 

between two rectangular glass slides can cover the Bluetooth channels. 
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7 CONCLUSIONS AND FUTURE WORK 

Analysis of potential sustainable energy sources and future finite resource reserves 

has identified a need for increased energy recovery and scavenging from the environment in 

future product design with solar energy highlighted as an attractive power source for wireless 

sensors. Implementing solar cells or panels of solar cells alongside antennas on a device has 

been identified as a potential area for miniaturisation, where the integration of solar and 

antenna technologies can reduce weight and the combined surface area. Investigation of prior 

approaches has highlighted the need for improvements to the reduction of shadowing and the 

integration with various solar cell types suited to different environments. This work sets out 

to integrate antennas and solar cells in one compact device to improve their combined 

performance and reduce overall device size and weight which is crucial for use in aerial 

vehicles. 

The second chapter demonstrated that the introduction of the lattice beneath a 

transmission line results in a 23% impedance change with a further 10% variation between 

orthogonal orientations on an asymmetric solar lattice. Simulated results revealed the electric 

fields to be two orders of magnitude greater between the transmission line and lattice than 

between the lattice and transmission line in areas where the transmission line crosses the 

metallisation of the lattice. Similarly it was shown how antenna input impedance is found to 

vary by 8% with orientation above the lattice which is reduced compared to the transmission 

line. This chapter laid the ground work for efforts to minimise sensitivity to various 

orientations. 

The third chapter showed the successful implementation of a grounding strip beneath 

a microstrip transmission line to isolate the transmission line from the electrode lattice of a 

polycrystalline silicon solar cell. Simulated results indicated reduced orientation sensitivity to 

3% variation while avoiding damage to the solar cell or expensive custom cell fabrication. 
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While the antenna remained slightly sensitive to orientation above the lattice a marked 

improvement on previous patch antenna designs was proven with measured results. In 

addition the low profile antenna exposed 9.11% more of the silicon to sunlight and achieved 

3.2 dB more gain than previous patch integrations as well as demonstrating the ability to 

implement beam switching with a dual antenna array. 

The fourth chapter minimised solar shadowing on a solar panel with the 

implementation of four low cost printed IFA antennas located between cells. Measured 

results demonstrate that the low profile antennas were capable of achieving circular-

polarization over a 13.8% axial ratio bandwidth while offering 30% less shadowing than 

previous meshed patch integrations. In addition, simulated results indicate the ability to 

implement polarization and pattern reconfiguration which with the high output power would 

allow this antenna to maintain communication between aerial vehicles which need to rotate 

during flight. 

Measured results for an ultra-wideband Vivaldi antenna prototyped from a flexible 

a-Si solar panel determined that narrow spacing between cells allowed for a successful 

radiator over a wide frequency range from 0.938 GHz to 4.21 GHz in the fifth chapter. 

Simulated results demonstrated that low-cost manufacturing techniques allow the antenna to 

be designed into an a-Si panel resulting in ~3% higher efficiency, 0.14 dB more gain and a 

solar output only 15% lower than a complete a-Si panel. Production using sputtering and 

laser etching allow a-Si solar antennas to be integrated into large panels for installation on a 

building façade. 

The sixth chapter demonstrated a prototype dipole antenna utilising dye sensitised 

solar cells to form a successful radiator despite the limitations of the glass shape and the 

manufacturing process. Measured and simulated results established that current flow was 

predominantly along the outer edge of the ITO layer, minimising the interaction with the 
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solar cell photosensitive material. Simulated results indicate that designing the antenna shape 

into the solar cells would improve the RF performance making a suitable antenna for indoor 

applications. 

Each solar integrated antenna has its own potential application both terrestrial and 

extra-terrestrial depending on its properties which have been identified throughout this thesis. 

High power outputs of c-Si solar cells make the IFA integrations useful in areas exposed to 

intermittent light sources meaning the maximum amount of energy can be stored in short 

periods of time. Alternatively c-Si cells benefit from colder temperatures at high altitudes 

making them more efficient thus allowing greater power generation for UAVs. The low 

manufacturing costs and re-configurability of an a-Si solar cell mean that it could easily be 

produced in large panels for building integration or in a smaller form for handheld or on-body 

devices. Dye-sensitised solar cells also have potential for small scale consumer electronics 

due to their greater ability to absorb diffuse sunlight and florescent light indoors. Additionally 

the colourful dyes make them more aesthetically pleasing than most cells meaning building 

integration of DSS-cell solar antennas may be more attractive. 

It is clear that the range of application for solar antennas is diverse and with the 

current state of energy reserves there will be increasing demand for consideration of 

renewable and sustainable energy sources in product design going forward. This thesis has 

demonstrated the successful integration of a number of solar antenna which could potentially 

aid a product designer to meet these demands.  
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7.1 Future Work 

Following on the work reported in this thesis, a number of areas for potential 

advancement in solar antenna research have been identified. 

Building on a better understanding of interaction with the solar lattice, it may be 

possible to develop this knowledge by including the solar cell in the antenna circuit. For 

example, using the rear contact of the solar cell as ground and connecting the grounding stub 

of an IFA to the solar lattice. An attempt could then be made to match this system and the 

effect of light intensity on antenna performance could be analysed. 

The integration of c-Si solar cells has been widely documented both in single cell and 

panelised form, however these solar cells require structural support, glass covering and 

encapsulation to protect the brittle cells. These features have not been taken account of in 

prior approaches to date as the focus has been on understanding interaction with the solar 

cell. It is important to understand how the packaging materials and structure would affect 

antennas designed into a solar panel. Maintaining current panel dimensions may constrain the 

antenna design however increasing the dimensions may impact solar performance and would 

greatly increase cost.   

Antennas and transmission lines traversing solar cells cover part of the solar cell 

reducing solar performance. Substrates manufactured as luminescent solar concentrators may 

be capable of directing light to the material covered by the metallic layers further increasing 

solar power generation.  

A prototype a-Si based solar antenna that was demonstrated here would benefit from a 

manufacturing process which incorporated the antenna within an a-Si solar panel. 

Characterisation of the antenna performance with the additional structural elements required 

to achieve a manufacturable antenna would be useful. In particular, how the removal of the 

encapsulating layer from the slot might impact the antenna performance and whether the 



103 

 

additional expense of this extra production step is justifiable. In addition investigating the 

possibility of integrating a transmission line into the solar cell design could also be 

investigated.  

A prototype dye sensitised solar cell antenna was demonstrated. This antenna was 

dependant on the shape and metallisation of the glass slides used to make the antenna. Further 

research into designing the antenna structure into the solar cell would improve understanding 

of dye-sensitised solar antennas. Additionally the use of platinum instead of carbon, plastic 

instead of glass, different dyes and different transparent conductors could be investigated to 

assess the potential degradation or improvement of antenna performance with the 

introduction of these materials. 
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