17 research outputs found

    Soft Actuators and Robotic Devices for Rehabilitation and Assistance

    Get PDF
    Soft actuators and robotic devices have been increasingly applied to the field of rehabilitation and assistance, where safe human and machine interaction is of particular importance. Compared with their widely used rigid counterparts, soft actuators and robotic devices can provide a range of significant advantages; these include safe interaction, a range of complex motions, ease of fabrication and resilience to a variety of environments. In recent decades, significant effort has been invested in the development of soft rehabilitation and assistive devices for improving a range of medical treatments and quality of life. This review provides an overview of the current state-of-the-art in soft actuators and robotic devices for rehabilitation and assistance, in particular systems that achieve actuation by pneumatic and hydraulic fluid-power, electrical motors, chemical reactions and soft active materials such as dielectric elastomers, shape memory alloys, magnetoactive elastomers, liquid crystal elastomers and piezoelectric materials. Current research on soft rehabilitation and assistive devices is in its infancy, and new device designs and control strategies for improved performance and safe human-machine interaction are identified as particularly untapped areas of research. Finally, insights into future research directions are outlined

    Soft Actuators and Robotic Devices for Rehabilitation and Assistance

    Get PDF
    Soft actuators and robotic devices have been increasingly applied to the field of rehabilitation and assistance, where safe human and machine interaction is of particular importance. Compared with their widely used rigid counterparts, soft actuators and robotic devices can provide a range of significant advantages; these include safe interaction, a range of complex motions, ease of fabrication and resilience to a variety of environments. In recent decades, significant effort has been invested in the development of soft rehabilitation and assistive devices for improving a range of medical treatments and quality of life. This review provides an overview of the current state-of-the-art in soft actuators and robotic devices for rehabilitation and assistance, in particular systems that achieve actuation by pneumatic and hydraulic fluid-power, electrical motors, chemical reactions and soft active materials such as dielectric elastomers, shape memory alloys, magnetoactive elastomers, liquid crystal elastomers and piezoelectric materials. Current research on soft rehabilitation and assistive devices is in its infancy, and new device designs and control strategies for improved performance and safe human-machine interaction are identified as particularly untapped areas of research. Finally, insights into future research directions are outlined

    Robotic Home-Based Rehabilitation Systems Design: From a Literature Review to a Conceptual Framework for Community-Based Remote Therapy During COVID-19 Pandemic

    Get PDF
    During the COVID-19 pandemic, the higher susceptibility of post-stroke patients to infection calls for extra safety precautions. Despite the imposed restrictions, early neurorehabilitation cannot be postponed due to its paramount importance for improving motor and functional recovery chances. Utilizing accessible state-of-the-art technologies, home-based rehabilitation devices are proposed as a sustainable solution in the current crisis. In this paper, a comprehensive review on developed home-based rehabilitation technologies of the last 10 years (2011–2020), categorizing them into upper and lower limb devices and considering both commercialized and state-of-the-art realms. Mechatronic, control, and software aspects of the system are discussed to provide a classified roadmap for home-based systems development. Subsequently, a conceptual framework on the development of smart and intelligent community-based home rehabilitation systems based on novel mechatronic technologies is proposed. In this framework, each rehabilitation device acts as an agent in the network, using the internet of things (IoT) technologies, which facilitates learning from the recorded data of the other agents, as well as the tele-supervision of the treatment by an expert. The presented design paradigm based on the above-mentioned leading technologies could lead to the development of promising home rehabilitation systems, which encourage stroke survivors to engage in under-supervised or unsupervised therapeutic activities

    Leg vein pressure pulser (LVPP): a mechatronic device for spinal cord injured patient standing in for the ineffectiveness of paralyzed leg muscles to pump blood from leg veins towards heart

    Get PDF
    Paraplegic subject often experience an impairment of the cardiovascular function. One of the most important factors in the occurrence of this situation is the drastic reduction in venous return from the muscle at rest, due to the absence of the function of muscle pump that is present in the able-bodied subjects. It is reasonable to assume that an external mechanical force applied on the lower limbs of paraplegic subjects might produce a positive effect on cardiovascular condition. Accordingly, the research aimed to identify and develop a robotic device to restore the cardiovascular function in paraplegics. To test this hypothesis we performed two experimental studies involving healthy subjects where two automatic robotic able to apply an ascendant external pressure to lower limbs were tested. Hemodynamic response was monitored beat-by-beat by means of impedance cardiography and Doppler ultrasound was used to measure cardiac volumes. Results show that the application of robotic mechanical actuators pneumatic is able to generate cycles of compression and decompression on venous structures of the lower limbs similar to what normally happens in the skeletal muscle when subjects are walking. Especially when actuators simulated muscle pattern activation similar to mechanism of walking we were able to further increase cardiac output and end diastolic volume. In conclusion our preliminary finding suggest that is possible to compensate partially the lack of venous return in spinal cord injury population thus increasing the quality of life, reducing the risk of cardiovascular disease and then extend their life expectancy

    Wearable Tactile Pressure Sensing for Compression Garments and Control of Active Compression Devices

    Get PDF
    Compression garments on the lower limbs have been used for the treatment of venous deficiencies for centuries. More recently, healthy athletes have used similar garments for an edge in performance and improved recovery times. The basis for their use is the increase of blood circulation that helps oxygenate muscles. Active compression devices that apply intermittent compression are less prevalent but have the potential to generate a greater impact on blood circulation. A new study into the effects of active compression required the development of an active compression system that would apply intermittent compression in a reliable manner. In the present thesis, a control system to facilitate active compression and generate a positive impact on blood circulation is pursued. This development involved setting up the timing of the compression and implementing a controller that regulates the compression pressure. A new capacitive sensor for pressure feedback to the controller is also evaluated. In the resulting active compression system that was built, an electrocardiogram (ECG) and heel switch are used to determine the timing of the compression. The ECG synchronizes the compression with the heartbeat, while the heel switch prevents compression from being applied when the calf muscles are contracted because the compression would not have an effect in that scenario. When the timing criteria is met, sequential compression up the calf is applied with five inflatable cuffs to push the blood up the leg and towards the heart. The pressure is sensed during each compression and used in an iterative learning controller that regulates the amount of compression applied

    Exploration of peripheral electrical stimulation adapted as a modulation tool for reciprocal inhibition through the activation of afferent fibers during gait

    Get PDF
    The most accessible manner to perform physical activity and allow locomotion in human beings is walking. This activity is allowed thanks to reciprocal Ia inhibition mechanism, controlled by the spinal and supraspinal inhibitory circuits. The idea of this mechanism is to deactivate the antagonist muscle while the agonist is being contracted, allowing the proper muscle coordination necessary to walk. The interruption of spinal fibers produced after Spinal Cord Injury, disrupt this control on reciprocal Ia inhibition. The result of this lack of control is a co-activation of antagonist muscles generating spasticity of lower limbs which induce walking impairments. The importance of walking recovery for the independence and society re-integration of patient, raise the quantity of emerging walking rehabilitation therapies. One of these therapies, the application of peripheral nerve stimulation, has demonstrated promising results although more studies are necessary. This theory is the base of this Master Thesis which aim is to develop and validate a gait neuromodu- lation platform that induce neuroplasticity of spinal circuits, improving reciprocal Ia inhibition. The idea of the platform is to deliver afferent stimulation into the Common Peroneal Nerve innervating Tibialis Anterior muscle, to induce reciprocal Ia inhibition onto the antagonist Soleus muscle. This platform has been validated in 20 healthy volunteers in order to assess its effectiveness. The first part of the experimental protocol is an off-line analysis of Gait Cycle to evaluate the activation of mus- cles during the different phases of this cycle. Then, there is an assessment of the activity of antagonist muscle previous to the stimulation intervention by using the analysis of soleus H-reflex. Posteri- orly, the afferent stimulation is applied during a 10 minutes treadmill training using three different strategies depending on patient: In-phase stimulation during swing phase, Out-of-phase stimulation during stance phase, and Control strategy to check if stimulation has a real effect. The final processes of experimental protocol are two different assessments of the soleus activity, one immediately after the intervention and other 30 minutes after to evaluate the duration of effects. The results obtained demonstrate that afferent electrical stimulation has a real effect on modulation of reciprocal Ia inhibition. On the one hand, when electrical stimulation is applied during the swing phase, there is an improvement of reciprocal Ia inhibition. On the other hand, when stimulation is delivered during the stance phase, there is a worsening of reciprocal Ia inhibition. These results conclude that afferent electrical stimulation, applied at the swing phase of gait cycle, is a promising strategy to induce reciprocal Ia inhibition in Spinal Cord Injury patients. The induc- tion of this inhibitory circuit will lead to the proper activation of muscles during walking, recovering impaired walkingLa forma más accesible de locomoción y actividad física en los seres humanos es caminar. Esta activi- dad se realiza gracias al mecanismo de inhibición recíproca, controlado por los circuitos inhibitorios espinales y supraespinales. La idea de este mecanismo es desactivar el músculo antagonista mientras se contrae el agonista, permitiendo la adecuada coordinación muscular durante la marcha. La interrupción de las fibras espinales tras una Lesión de la Médula Espinal desajusta el control de la inhibition reciprocal. El resultado de esta falta de control es una co-activación de los músculos antago- nistas generando espasticidad en las extremidades inferiores, lo que genera alteraciones en la marcha. La importancia de la recuperación de la marcha para lograr la independencia y la reintegración del paciente en la sociedad, ha incrementado el número de terapias emergentes en rehabilitación de la marcha. Una de estas terapias, la estimulación del nervio periférico, ha demostrado resultados prom- etedores. Esta teoría es la base de esta Tesis de Máster cuyo objetivo es desarrollar y validar una plataforma de neuromodulación de la marcha que induzca la neuroplasticidad de los circuitos espinales, mejorando los valores de inhibición recíproca. La idea es aplicar estimulación aferente en el Nervio Peroneo Común que inerva el músculo Tibial Anterior para inducir la inhibición recíproca en su músculo antagonista Soleo. Esta plataforma ha sido validada en 20 voluntarios sanos con el fin de evaluar su eficacia. La primera parte del protocolo experimental es un análisis del ciclo de la marcha para evaluar la activación de cada músculo durante las diferentes fases de este ciclo. Luego, previo a la intervención de estimu- lación, hay una evaluación de la actividad del músculo antagonista analizando el reflejo H del soleo. La intervención de estimulación aferente se aplica durante un entrenamiento de marcha con una du- ración de 10 minutos, utilizando tres estrategias diferentes dependiendo del paciente: estimulación ’In-phase’ durante la fase de oscilación, estimulación ’Out-of-phase’ durante la fase de postura, y ’Control’ para comprobar si la estimulación tiene un efecto real. Los procesos finales del protocolo son dos evaluaciones de la actividad del soleo, una inmediatamente después de la intervención y otra 30 minutos después para evaluar la duración de los efectos. Los resultados obtenidos demuestran que la estimulación eléctrica aferente tiene un efecto real en la modulación de la inhibición recíproca. Por un lado, cuando la estimulación eléctrica se aplica durante la fase de oscilación, hay una mejora de la inhibición recíproca. Por otro lado, cuando la estimulación se administra durante la fase de postura, hay un empeoramiento de la inhibición recíproca. Estos resultados concluyen que la estimulación eléctrica aferente, administrada en la fase de oscilación del ciclo de la marcha, es una estrategia prometedora para inducir la inhibición recíproca en pacientes con Lesión de la Médula Espinal. La inducción de este circuito inhibidor generará la adecuada acti- vación de los músculos durante la marcha, recuperando el ciclo de marcha normalLa manera més accessible de locomoció i activitat física en els éssers humans és caminar. Aquesta ac- tivitat es realitza gràcies al mecanisme d’inhibició recíproca, controlat pels circuits inhibitoris espinals i supraespinals. La idea d’aquest mecanisme és desactivar el múscul antagonista mentre es contrau l’agonista, permetent la coordinació muscular adequada durant la marxa. La interrupció de les fibres espinals després d’una lesió medul·lar desajusta el control de la inhibició reciprocal. El resultat d’aquesta manca de control és una coactivació dels músculs antagonistes gen- erant espasticitat a les extremitats inferiors, cosa que genera alteracions a la marxa. La importància de la recuperació de la marxa per a la independència i la reintegració del pacient a la societat, ha incrementat el nombre de teràpies emergents de rehabilitació de la marxa. Una daquestes teràpies, lestimulació del nervi perifèric, ha demostrat resultats prometedors. Aquesta teoria és la base dáquesta Tesi de Màster que té com a objectiu desenvolupar una plataforma de neuromodulació de la marxa que indueixi la neuroplasticitat dels circuits espinals, millorant els valors de inhibició recíproca. La idea és aplicar una estimulació aferent al Nervi Peroneal Comú que inerva el múscul Tibial Anterior per induir la inhibició recíproca al múscul antagonista Soli. Aquesta plataforma ha estat validada en 20 voluntaris sans per avaluar-ne l’eficàcia. La primera part del protocol experimental és una anàlisi del cicle de marxa per avaluar l’activació de cada múscul durant les diferents fases del cicle de la marxa. Després, amb la intervenció d’estimulació prèvia, hi ha una avaluació de l’activitat del múscul antagonista analitzant el reflex H del soli. La inter- venció d’estimulació aferent s’aplica durant un entrenament de marxa amb una durada de 10 min- uts, utilitzant tres estratègies diferents depenent del pacient: estimulació ’In-phase’ durant la fase d’oscil·lació, estimulació ’Out-of-phase’ durant la fase de postura, i ’Control’ per comprovar si la es- timulació té un efecte real. Els processos finals del protocol són dues avaluacions de l’activitat de soli, una immediatament després de la intervenció i una altra 30 minuts després per avaluar la durada dels efectes. Els resultats obtinguts demostren que l’estimulació elèctrica aferent té un efecte real en la modulació de la inhibició recíproca. D’una banda, quan s’aplica l’estimulació elèctrica durant la fase d’oscil·lació, hi ha una millora de la inhibició recíproca. D’altra banda, quan s’administra l’estimulació durant la fase de postura, hi ha un empitjorament de la inhibició recíproca. Aquests resultats conclouen que l’estimulació elèctrica aferent, a la fase d’oscil·lació del cicle de la marxa, és una estratègia prometedora per induir la inhibició recíproca en pacients amb lesió medul·lar. La inducció d’aquest circuit inhibidor generarà a l’activació adequada dels músculs durant la marxa, recuperant el cicle de marxa norma

    Biomechanical Spectrum of Human Sport Performance

    Get PDF
    Writing or managing a scientific book, as it is known today, depends on a series of major activities, such as regrouping researchers, reviewing chapters, informing and exchanging with contributors, and at the very least, motivating them to achieve the objective of publication. The idea of this book arose from many years of work in biomechanics, health disease, and rehabilitation. Through exchanges with authors from several countries, we learned much from each other, and we decided with the publisher to transfer this knowledge to readers interested in the current understanding of the impact of biomechanics in the analysis of movement and its optimization. The main objective is to provide some interesting articles that show the scope of biomechanical analysis and technologies in human behavior tasks. Engineers, researchers, and students from biomedical engineering and health sciences, as well as industrial professionals, can benefit from this compendium of knowledge about biomechanics applied to the human body

    Clinical exercise : a case-based approach

    Full text link

    Effectiveness of single and combined treatments on biomechanical and clinical outcomes during walking in healthy individuals and individuals with knee osteoarthritis

    Get PDF
    Knee osteoarthritis (OA) is considered a common chronic musculoskeletal disease affecting the medial compartment more than the lateral compartment and leading to disability and a reduction in activity level. Lateral wedge insoles (LWI) are a conservative treatment that aims to reduce the knee loading (External knee adduction moment (EKAM), which is increased in individuals with knee OA compared to healthy individuals. Although, LWI reduce EKAM in individuals with knee OA, no significant difference was seen in pain when compared to the control treatment (neutral insole). Patients and healthcare practitioners are driven by pain more than by mechanics. Therefore, reductions in pain and loading could be achieved with LWI if combined with other conservative treatments, such as a simple knee sleeve.The overall aim of the thesis was to investigate the biomechanical and clinical effects of combining LWI with a knee sleeve, compared to each treatment used on its own. To accomplish this research, four studies were conducted. Firstly, a reliability study amongst healthy individuals was conducted. Secondly, a reliability study of individuals affected by knee OA was conducted. Both studies showed that most biomechanical and clinical outcomes have excellent reliability and low measurement error, which supports using them. Thirdly, a randomised crossover study was conducted among healthy individuals to investigate the immediate effects of the combined treatment and the single treatments. The results showed that a knee sleeve significantly reduced the knee joint frontal plane range of motion (ROM) but not the EKAM or muscle co-contraction. Furthermore, a significant reduction in the EKAM with use of LWI was noticed. The combined treatment showed both a reduction in the EKAM from LWI use and a reduction in frontal plane ROM, which supports the use of these treatments in individuals with knee OA. In the fourth and main study, thirty-four participants with medial knee OA were enrolled and randomised into 3 groups (LWI, simple knee sleeve, LWI and simple knee sleeve). The immediate and six-week effect on biomechanical and clinical outcomes were measured and compared between and within groups. At baseline there was no significant difference between the groups. The results showed a significant reduction in the magnitude of change in EKAM for the combined group and the LWI group compared with the sleeve group. The magnitude of change in muscle co-contraction was higher in the sleeve group and the combined group compared to the LWI group. The combined group (31.88%) showed greater reduction in pain than the LWI group (21.1%) and the sleeve group (11.16%); however, this was not statistically significant. Only the combined group and the LWI group showed improvement in balance and functional tests compared to their baseline. Finally, the pain pressure threshold did not change after treatment in all groups. Overall, the findings of this thesis support combined treatment. A larger trial to investigate combined treatment and single treatments in a larger sample size is needed to make the findings more conclusive
    corecore