160 research outputs found

    kobakku doraibabiriti o yusuru robottoyo akuchueta ni kansuru kenkyu

    Get PDF
    制度:新 ; 文部省報告番号:乙2045号 ; 学位の種類:博士(工学) ; 授与年月日:2006/10/19 ; 早大学位記番号:新433

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    Mechanical design of small-size humanoid robot TWNHR-3

    Get PDF
    [[abstract]]In this paper, a mechanical structure with 26 DOFs (degrees of freedom) is proposed so that an implemented small-size humanoid robot named TWNHR-3 is able to accomplish the man-like walking motion. The height and weight of the implemented robot is 46 cm and 3.1 kg, respectively. There are 2 DOFs on the head, 2 DOFs on the trunk, 4 DOFs on each arm, and 7 DOFs on each leg. Some basic walking experiments of TWNHR-3 are presented to illustrate that the proposed mechanical structure lets the robot move forward, turn, and slip effectively.[[conferencetype]]國際[[conferencedate]]20071105~20071108[[iscallforpapers]]Y[[conferencelocation]]Taipei, Taiwa

    Walking Pattern and Compensatory Body Motion of Biped Humanoid Robot

    Get PDF
    This paper presents a walking pattern generation method for biped walking. There are three walking phases such as a double support, a swing and a contact phase. In the swing phase, a leg motion pattern is produced by using a six order polynomial, while a leg motion pattern is generated by using a quintic polynomial in the contact and double support phase. When a biped humanoid robot dynamically walks on the ground, moments are produced by the motion of the lower-limbs. So, a moment compensation method is also discussed in this paper. Based on the motion of the lower-limbs and ZMP (Zero Moment Point), the motion of the trunk and the waist is calculated to cancel the moments. Through simulation, the effectiveness of the moment compensation methods is verified

    A Foot Placement Strategy for Robust Bipedal Gait Control

    Get PDF
    This thesis introduces a new measure of balance for bipedal robotics called the foot placement estimator (FPE). To develop this measure, stability first is defined for a simple biped. A proof of the stability of a simple biped in a controls sense is shown to exist using classical methods for nonlinear systems. With the addition of a contact model, an analytical solution is provided to define the bounds of the region of stability. This provides the basis for the FPE which estimates where the biped must step in order to be stable. By using the FPE in combination with a state machine, complete gait cycles are created without any precalculated trajectories. This includes gait initiation and termination. The bipedal model is then advanced to include more realistic mechanical and environmental models and the FPE approach is verified in a dynamic simulation. From these results, a 5-link, point-foot robot is designed and constructed to provide the final validation that the FPE can be used to provide closed-loop gait control. In addition, this approach is shown to demonstrate significant robustness to external disturbances. Finally, the FPE is shown in experimental results to be an unprecedented estimate of where humans place their feet for walking and jumping, and for stepping in response to an external disturbance

    Bipedal humanoid robot control by fuzzy adjustment of the reference walking plane

    Get PDF
    The two-legged humanoid structure has advantages for an assistive robot in the human living and working environment. A bipedal humanoid robot can avoid typical obstacles at homes and offices, reach consoles and appliances designed for human use and can be carried in human transport vehicles. Also, it is speculated that the absorption of robots in the human shape into the human society can be easier than that of other artificial forms. However, the control of bipedal walk is a challenge. Walking performance on solely even floor is not satisfactory. The complications of obtaining a balanced walk are dramatically more pronounced on uneven surfaces like inclined planes, which are quite commonly encountered in human surroundings. The difficulties lie in a variety of tasks ranging from sensor and data fusion to the design of adaptation systems which respond to changing surface conditions. This thesis presents a study on bipedal walk on inclined planes with changing slopes. A Zero Moment Point (ZMP) based gait synthesis technique is employed. The pitch angle reference for the foot sole plane −as expressed in a coordinate frame attached at the robot body − is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. Average ankle pitch torques and the average value of the body pitch angle, computed over a history of a predetermined number of sampling instants, are used as the inputs to this system. The proposed control method is tested via walking experiments with the 29 degreesof- freedom (DOF) human-sized full-body humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Experiments are performed on even floor and inclined planes with different slopes. The results indicate that the approach presented is successful in enabling the robot to stably enter, ascend and leave inclined planes with 15 percent (8.5 degrees) grade. The thesis starts with a terminology section on bipedal walking and introduces a number of successful humanoid robot projects. A survey of control techniques for the walk on uneven surfaces is presented. The design and construction of the experimental robotic platform SURALP is discussed with the mechanical, electronic, walking reference generation and control aspects. The fuzzy reference adjustment system proposed for the walk on inclined planes is detailed and experimental results are presented

    Walking trajectory generation & control of the humanoid robot: suralp

    Get PDF
    In recent years, the operational area of the robots started to extend and new functionalities are planned for them in our daily environments. As the human-robot interaction is being improved, the robots can provide support in elderly care, human assistance, rescue, hospital attendance and many other areas. With this motivation, an intensive research is focused around humanoid robotics in the last four decades. However, due to the nonlinear dynamics of the robot and high number of degrees of freedom, the robust balance of the bipedal walk is a challenging task. Smooth trajectory generation and online compensation methods are necessary to achieve a stable walk. In this thesis, Cartesian foot position references are generated as periodic functions with respect to a body-fixed coordinate frame. The online adjustment of these parameterized trajectories provides an opportunity in tuning the walking parameters without stopping the robot. The major contribution of this thesis in the context of trajectory generation is the smoothening of the foot trajectories and the introduction of ground push motion in the vertical direction. This pushing motion provided a dramatic improvement in the stability of the walking. Even though smooth foot reference trajectories are generated using the parameter based functions, the realization of a dynamically stable walk and maintenance of the robot balance requires walking control algorithms. This thesis introduces various control techniques to cope with disturbances or unevenness of the walking environment and compensate the mismatches between the planned and the actual walking based on sensory feedback. Moreover, an automatic homing procedure is proposed for the adjustment of the initial posture before the walking experiments. The presented control algorithms include ZMP regulation, foot orientation control, trunk orientation control, foot pitch torque difference compensation, body pitch angle correction, ground impact compensation and early landing modification. The effectiveness of the proposed trajectory generation and walking control algorithms is tested on the humanoid robot SURALP and a stable walk is achieved
    corecore