6 research outputs found

    Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    Get PDF
    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions.BMBF, 01GQ1201, Lernen und Gedächtnis in balancierten Systeme

    Models of spatial representation in the medial entorhinal cortex

    Get PDF
    Komplexe kognitive Funktionen wie Gedächtnisbildung, Navigation und Entscheidungsprozesse hängen von der Kommunikation zwischen Hippocampus und Neokortex ab. An der Schnittstelle dieser beiden Gehirnregionen liegt der entorhinale Kortex - ein Areal, das Neurone mit bemerkenswerten räumlichen Repräsentationen enthält: Gitterzellen. Gitterzellen sind Neurone, die abhängig von der Position eines Tieres in seiner Umgebung feuern und deren Feuerfelder ein dreieckiges Muster bilden. Man vermutet, dass Gitterzellen Navigation und räumliches Gedächtnis unterstützen, aber die Mechanismen, die diese Muster erzeugen, sind noch immer unbekannt. In dieser Dissertation untersuche ich mathematische Modelle neuronaler Schaltkreise, um die Entstehung, Weitervererbung und Verstärkung von Gitterzellaktivität zu erklären. Zuerst konzentriere ich mich auf die Entstehung von Gittermustern. Ich folge der Idee, dass periodische Repräsentationen des Raumes durch Konkurrenz zwischen dauerhaft aktiven, räumlichen Inputs und der Tendenz eines Neurons, durchgängiges Feuern zu vermeiden, entstehen könnten. Aufbauend auf vorangegangenen theoretischen Arbeiten stelle ich ein Einzelzell-Modell vor, das gitterartige Aktivität allein durch räumlich-irreguläre Inputs, Feuerratenadaptation und Hebbsche synaptische Plastizität erzeugt. Im zweiten Teil der Dissertation untersuche ich den Einfluss von Netzwerkdynamik auf das Gitter-Tuning. Ich zeige, dass Gittermuster zwischen neuronalen Populationen weitervererbt werden können und dass sowohl vorwärts gerichtete als auch rekurrente Verbindungen die Regelmäßigkeit von räumlichen Feuermustern verbessern können. Schließlich zeige ich, dass eine entsprechende Konnektivität, die diese Funktionen unterstützt, auf unüberwachte Weise entstehen könnte. Insgesamt trägt diese Arbeit zu einem besseren Verständnis der Prinzipien der neuronalen Repräsentation des Raumes im medialen entorhinalen Kortex bei.High-level cognitive abilities such as memory, navigation, and decision making rely on the communication between the hippocampal formation and the neocortex. At the interface between these two brain regions is the entorhinal cortex, a multimodal association area where neurons with remarkable representations of self-location have been discovered: the grid cells. Grid cells are neurons that fire according to the position of an animal in its environment and whose firing fields form a periodic triangular pattern. Grid cells are thought to support animal's navigation and spatial memory, but the cellular mechanisms that generate their tuning are still unknown. In this thesis, I study computational models of neural circuits to explain the emergence, inheritance, and amplification of grid-cell activity. In the first part of the thesis, I focus on the initial formation of grid-cell tuning. I embrace the idea that periodic representations of space could emerge via a competition between persistently-active spatial inputs and the reluctance of a neuron to fire for long stretches of time. Building upon previous theoretical work, I propose a single-cell model that generates grid-like activity solely form spatially-irregular inputs, spike-rate adaptation, and Hebbian synaptic plasticity. In the second part of the thesis, I study the inheritance and amplification of grid-cell activity. Motivated by the architecture of entorhinal microcircuits, I investigate how feed-forward and recurrent connections affect grid-cell tuning. I show that grids can be inherited across neuronal populations, and that both feed-forward and recurrent connections can improve the regularity of spatial firing. Finally, I show that a connectivity supporting these functions could self-organize in an unsupervised manner. Altogether, this thesis contributes to a better understanding of the principles governing the neuronal representation of space in the medial entorhinal cortex

    Space in the brain

    Get PDF

    Biophysical foundation and function of depolarizing afterpotentials in principal cells of the medial entorhinal cortex

    Get PDF
    Neurons in layer II of the rodent medial entorhinal cortex (MEC) encode spatial information. One particular type, grid cells, tends to fire at specific spatial locations that form hexagonal lattices covering the explored environment. Within these firing fields grid cells frequently show short high-frequency spike sequences. Such bursts have received little attention but may contribute substantially to encoding spatial information. On the other hand, in vitro recordings of MEC principal cells have revealed that action potentials are followed by prominent depolarizing afterpotentials (DAP). Their biophysical foundation and function, however, are poorly understood. The objective of this study is to understand the mechanism behind the DAP by creating a biophysical realistic model of a stellate cell and to draw a connection between DAPs and burst firing in vivo. The developed single-compartment model reproduced the main electrophysi- ological characteristics of stellate cells in the MEC layer II, that are a DAP, sag, tonic firing in response to positive step currents and resonance. Using virtual blocking experiments, it was found that for the generation of the DAP only a NaP , KDR and leak current were necessary whereby the NaP current also exhibited a resurgent component. This suggests that for the generation of the DAP a balance between several currents is needed. In addition, the persistent and resurgent sodium current might play an important role. We analyzed the relevance of DAPs in vivo using whole-cell recordings of grid cells from Domnisoru et al. (2013). We found that around 20% of the cells exhibited a DAP. However, the percentage of cells was much lower than estimates from in vitro recordings. We showed that this is partly due to the quality of the recording as selecting APs from presumably good parts of the recording improved the visibility of DAPs. To investigate the relationship between DAPs and burst firing all cells were classified into bursty and non-bursty based on the spike-time autocorrelation. All cells with a DAP were bursty except the cell with the smallest DAP. Moreover, taking the mean of the spike-triggered average of the membrane potential for all bursty and non-bursty cells respectively showed a clear DAP for bursty but not for non-bursty cells. In summary, we found that the DAP can be realized in a single-compartment model by a NaP , KDR and leak current and provided evidence for the relevance of DAPs for burst firing in vivo

    A single-cell spiking model for the origin of grid-cell patterns.

    No full text
    Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity

    A single-cell spiking model for the origin of grid-cell patterns

    No full text
    corecore