3,366 research outputs found

    Distributed Maximum Matching in Bounded Degree Graphs

    Full text link
    We present deterministic distributed algorithms for computing approximate maximum cardinality matchings and approximate maximum weight matchings. Our algorithm for the unweighted case computes a matching whose size is at least (1-\eps) times the optimal in \Delta^{O(1/\eps)} + O\left(\frac{1}{\eps^2}\right) \cdot\log^*(n) rounds where nn is the number of vertices in the graph and Δ\Delta is the maximum degree. Our algorithm for the edge-weighted case computes a matching whose weight is at least (1-\eps) times the optimal in \log(\min\{1/\wmin,n/\eps\})^{O(1/\eps)}\cdot(\Delta^{O(1/\eps)}+\log^*(n)) rounds for edge-weights in [\wmin,1]. The best previous algorithms for both the unweighted case and the weighted case are by Lotker, Patt-Shamir, and Pettie~(SPAA 2008). For the unweighted case they give a randomized (1-\eps)-approximation algorithm that runs in O((\log(n)) /\eps^3) rounds. For the weighted case they give a randomized (1/2-\eps)-approximation algorithm that runs in O(\log(\eps^{-1}) \cdot \log(n)) rounds. Hence, our results improve on the previous ones when the parameters Δ\Delta, \eps and \wmin are constants (where we reduce the number of runs from O(log(n))O(\log(n)) to O(log(n))O(\log^*(n))), and more generally when Δ\Delta, 1/\eps and 1/\wmin are sufficiently slowly increasing functions of nn. Moreover, our algorithms are deterministic rather than randomized.Comment: arXiv admin note: substantial text overlap with arXiv:1402.379

    Linear Programming in the Semi-streaming Model with Application to the Maximum Matching Problem

    Get PDF
    In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has increased. This is a model where edges are streamed-in in an adversarial order and we are allowed a space proportional to the number of vertices in a graph. In recent years, there has been several new results in this semi-streaming model. However broad techniques such as linear programming have not been adapted to this model. We present several techniques to adapt and optimize linear programming based approaches in the semi-streaming model with an application to the maximum matching problem. As a consequence, we improve (almost) all previous results on this problem, and also prove new results on interesting variants

    Incremental (1-?)-Approximate Dynamic Matching in O(poly(1/?)) Update Time

    Get PDF
    In the dynamic approximate maximum bipartite matching problem we are given bipartite graph G undergoing updates and our goal is to maintain a matching of G which is large compared the maximum matching size ?(G). We define a dynamic matching algorithm to be ? (respectively (?, ?))-approximate if it maintains matching M such that at all times |M | ? ?(G) ? ? (respectively |M| ? ?(G) ? ? - ?). We present the first deterministic (1-?)-approximate dynamic matching algorithm with O(poly(?^{-1})) amortized update time for graphs undergoing edge insertions. Previous solutions either required super-constant [Gupta FSTTCS\u2714, Bhattacharya-Kiss-Saranurak SODA\u2723] or exponential in 1/? [Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA\u2719] update time. Our implementation is arguably simpler than the mentioned algorithms and its description is self contained. Moreover, we show that if we allow for additive (1, ??n)-approximation our algorithm seamlessly extends to also handle vertex deletions, on top of edge insertions. This makes our algorithm one of the few small update time algorithms for (1-?)-approximate dynamic matching allowing for updates both increasing and decreasing the maximum matching size of G in a fully dynamic manner. Our algorithm relies on the weighted variant of the celebrated Edge-Degree-Constrained-Subgraph (EDCS) datastructure introduced by [Bernstein-Stein ICALP\u2715]. As far as we are aware we introduce the first application of the weighted-EDCS for arbitrarily dense graphs. We also present a significantly simplified proof for the approximation ratio of weighed-EDCS as a matching sparsifier compared to [Bernstein-Stein], as well as simple descriptions of a fractional matching and fractional vertex cover defined on top of the EDCS. Considering the wide range of applications EDCS has found in settings such as streaming, sub-linear, stochastic and more we hope our techniques will be of independent research interest outside of the dynamic setting

    Best of Two Local Models: Local Centralized and Local Distributed Algorithms

    Full text link
    We consider two models of computation: centralized local algorithms and local distributed algorithms. Algorithms in one model are adapted to the other model to obtain improved algorithms. Distributed vertex coloring is employed to design improved centralized local algorithms for: maximal independent set, maximal matching, and an approximation scheme for maximum (weighted) matching over bounded degree graphs. The improvement is threefold: the algorithms are deterministic, stateless, and the number of probes grows polynomially in logn\log^* n, where nn is the number of vertices of the input graph. The recursive centralized local improvement technique by Nguyen and Onak~\cite{onak2008} is employed to obtain an improved distributed approximation scheme for maximum (weighted) matching. The improvement is twofold: we reduce the number of rounds from O(logn)O(\log n) to O(logn)O(\log^*n) for a wide range of instances and, our algorithms are deterministic rather than randomized
    corecore