220 research outputs found

    A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters

    Get PDF
    In [SIAM J. Sci. Comput., 26 (2005), pp. 907-929], we initiated the study of using WENO (weighted essentially nonoscillatory) methodology as limiters for the RKDG (Runge-Kutta discontinuous Galerkin) methods. The idea is to first identify "troubled cells," namely, those cells where limiting might be needed, then to abandon all moments in those cells except the cell averages and reconstruct those moments from the information of neighboring cells using a WENO methodology. This technique works quite well in our one- and two-dimensional test problems [SIAM J. Sci. Comput., 26 (2005), pp. 907-929] and in the follow-up work where more compact Hermite WENO methodology is used in the troubled cells. In these works we used the classical minmod-type TVB (total variation bounded) limiters to identify the troubled cells; that is, whenever the minmod limiter attempts to change the slope, the cell is declared to be a troubled cell. This troubled-cell indicator has a TVB parameter M to tune and may identify more cells than necessary as troubled cells when M is not chosen adequately, making the method costlier than necessary. In this paper we systematically investigate and compare a few different limiter strategies as troubled-cell indicators with an objective of obtaining the most efficient and reliable troubled-cell indicators to save computational cost

    Runge-Kutta discontinuous Galerkin method using WENO limiters

    Get PDF
    In [J. Qiu, C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM Journal on Scientific Computing 26 (2005) 907-929], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two-dimensional problems on unstructured meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously obtain uniform high order accuracy and sharp, nonoscillatory shock transition for RKDG methods. Numerical results are provided to illustrate the behavior of this procedure. (C) 2008 Elsevier Inc. All rights reserved

    Dissipation-based WENO stabilization of high-order finite element methods for scalar conservation laws

    Full text link
    We present a new perspective on the use of weighted essentially nonoscillatory (WENO) reconstructions in high-order methods for scalar hyperbolic conservation laws. The main focus of this work is on nonlinear stabilization of continuous Galerkin (CG) approximations. The proposed methodology also provides an interesting alternative to WENO-based limiters for discontinuous Galerkin (DG) methods. Unlike Runge--Kutta DG schemes that overwrite finite element solutions with WENO reconstructions, our approach uses a reconstruction-based smoothness sensor to blend the numerical viscosity operators of high- and low-order stabilization terms. The so-defined WENO approximation introduces low-order nonlinear diffusion in the vicinity of shocks, while preserving the high-order accuracy of a linearly stable baseline discretization in regions where the exact solution is sufficiently smooth. The underlying reconstruction procedure performs Hermite interpolation on stencils consisting of a mesh cell and its neighbors. The amount of numerical dissipation depends on the relative differences between partial derivatives of reconstructed candidate polynomials and those of the underlying finite element approximation. All derivatives are taken into account by the employed smoothness sensor. To assess the accuracy of our CG-WENO scheme, we derive error estimates and perform numerical experiments. In particular, we prove that the consistency error of the nonlinear stabilization is of the order p+1/2p+1/2, where pp is the polynomial degree. This estimate is optimal for general meshes. For uniform meshes and smooth exact solutions, the experimentally observed rate of convergence is as high as p+1p+1

    Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin schemes: Triangular elements

    Get PDF
    International audienceTwo new classes of compact weighted essentially nonoscillatory (WENO) polynomial limiters are presented for second-, third-, fourth-, and fifth-order discontinuous Galerkin (DG) schemes on irregular simplex elements. The presented WENO-DG procedures are extensions of the high-order WENO finite-volume and finite-difference schemes of Zhu and Shu (2017) [25], (2019) [26] to high-order unstructured DG schemes. A compact positivity preserving limiter is applied to the solutions to ensure pressure and density remain within physical ranges at all time. It is then verified that the bounded WENO-DG maintains the formal order of accuracy of the underlying DG schemes in the smooth regions. The performance of the proposed WENO-DG is also demonstrated with inviscid test cases including the classical Riemann problems, shock-turbulence interaction, scramjet, blunt body flows, and the double Mach Reflection problems

    Non-Oscillatory Hierarchical Reconstruction for Central and Finite Volume Schemes

    Get PDF
    This is the continuation of the paper "central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction" by the same authors. The hierarchical reconstruction introduced therein is applied to central schemes on overlapping cells and to nite volume schemes on non-staggered grids. This takes a new nite volume approach for approximating non-smooth solutions. A critical step for high order nite volume schemes is to reconstruct a nonoscillatory high degree polynomial approximation in each cell out of nearby cell averages. In the paper this procedure is accomplished in two steps: first to reconstruct a high degree polynomial in each cell by using e.g., a central reconstruction, which is easy to do despite the fact that the reconstructed polynomial could be oscillatory; then to apply the hierarchical reconstruction to remove the spurious oscillations while maintaining the high resolution. All numerical computations for systems of conservation laws are performed without characteristic decomposition. In particular, we demonstrate that this new approach can generate essentially non-oscillatory solutions even for 5th order schemes without characteristic decomposition.The research of Y. Liu was supported in part by NSF grant DMS-0511815. The research of C.-W. Shu was supported in part by the Chinese Academy of Sciences while this author was visiting the University of Science and Technology of China (grant 2004-1-8) and the Institute of Computational Mathematics and Scienti c/Engineering Computing. Additional support was provided by ARO grant W911NF-04-1-0291 and NSF grant DMS-0510345. The research of E. Tadmor was supported in part by NSF grant 04-07704 and ONR grant N00014-91-J-1076. The research of M. Zhang was supported in part by the Chinese Academy of Sciences grant 2004-1-8
    • …
    corecore