912 research outputs found

    Diszkrét matematika = Discrete mathematics

    Get PDF
    A pályázat résztvevői igen aktívak voltak a 2006-2008 években. Nemcsak sok eredményt értek el, miket több mint 150 cikkben publikáltak, eredményesen népszerűsítették azokat. Több mint 100 konferencián vettek részt és adtak elő, felerészben meghívott, vagy plenáris előadóként. Hagyományos gráfelmélet Több extremális gráfproblémát oldottunk meg. Új eredményeket kaptunk Ramsey számokról, globális és lokális kromatikus számokról, Hamiltonkörök létezéséséről. a crossig numberről, gráf kapacitásokról és kizárt részgráfokról. Véletlen gráfok, nagy gráfok, regularitási lemma Nagy gráfok "hasonlóságait" vizsgáltuk. Különféle metrikák ekvivalensek. Űj eredeményeink: Hereditary Property Testing, Inverse Counting Lemma and the Uniqueness of Hypergraph Limit. Hipergráfok, egyéb kombinatorika Új Sperner tipusú tételekte kaptunk, aszimptotikusan meghatározva a halmazok max számát bizonyos kizárt struktőrák esetén. Több esetre megoldottuk a kizárt hipergráf problémát is. Elméleti számítástudomány Új ujjlenyomat kódokat és bioinformatikai eredményeket kaptunk. | The participants of the project were scientifically very active during the years 2006-2008. They did not only obtain many results, which are contained in their more than 150 papers appeared in strong journals, but effectively disseminated them in the scientific community. They participated and gave lectures in more than 100 conferences (with multiplicity), half of them were plenary or invited talks. Traditional graph theory Several extremal problems for graphs were solved. We obtained new results for certain Ramsey numbers, (local and global) chromatic numbers, existence of Hamiltonian cycles crossing numbers, graph capacities, and excluded subgraphs. Random graphs, large graphs, regularity lemma The "similarities" of large graphs were studied. We show that several different definitions of the metrics (and convergence) are equivalent. Several new results like the Hereditary Property Testing, Inverse Counting Lemma and the Uniqueness of Hypergraph Limit were proved Hypergraphs, other combinatorics New Sperner type theorems were obtained, asymptotically determining the maximum number of sets in a family of subsets with certain excluded configurations. Several cases of the excluded hypergraph problem were solved. Theoretical computer science New fingerprint codes and results in bioinformatics were found

    Which groups are amenable to proving exponent two for matrix multiplication?

    Get PDF
    The Cohn-Umans group-theoretic approach to matrix multiplication suggests embedding matrix multiplication into group algebra multiplication, and bounding ω\omega in terms of the representation theory of the host group. This framework is general enough to capture the best known upper bounds on ω\omega and is conjectured to be powerful enough to prove ω=2\omega = 2, although finding a suitable group and constructing such an embedding has remained elusive. Recently it was shown, by a generalization of the proof of the Cap Set Conjecture, that abelian groups of bounded exponent cannot prove ω=2\omega = 2 in this framework, which ruled out a family of potential constructions in the literature. In this paper we study nonabelian groups as potential hosts for an embedding. We prove two main results: (1) We show that a large class of nonabelian groups---nilpotent groups of bounded exponent satisfying a mild additional condition---cannot prove ω=2\omega = 2 in this framework. We do this by showing that the shrinkage rate of powers of the augmentation ideal is similar to the shrinkage rate of the number of functions over (Z/pZ)n(\mathbb{Z}/p\mathbb{Z})^n that are degree dd polynomials; our proof technique can be seen as a generalization of the polynomial method used to resolve the Cap Set Conjecture. (2) We show that symmetric groups SnS_n cannot prove nontrivial bounds on ω\omega when the embedding is via three Young subgroups---subgroups of the form Sk1×Sk2××SkS_{k_1} \times S_{k_2} \times \dotsb \times S_{k_\ell}---which is a natural strategy that includes all known constructions in SnS_n. By developing techniques for negative results in this paper, we hope to catalyze a fruitful interplay between the search for constructions proving bounds on ω\omega and methods for ruling them out.Comment: 23 pages, 1 figur

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(V(H)r1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure
    corecore