6 research outputs found

    A simple local 3-approximation algorithm for vertex cover

    Get PDF
    We present a local algorithm (constant-time distributed algorithm) for finding a 3-approximate vertex cover in bounded-degree graphs. The algorithm is deterministic, and no auxiliary information besides port numbering is required. (c) 2009 Elsevier B.V. All rights reserved.We present a local algorithm (constant-time distributed algorithm) for finding a 3-approximate vertex cover in bounded-degree graphs. The algorithm is deterministic, and no auxiliary information besides port numbering is required. (c) 2009 Elsevier B.V. All rights reserved.We present a local algorithm (constant-time distributed algorithm) for finding a 3-approximate vertex cover in bounded-degree graphs. The algorithm is deterministic, and no auxiliary information besides port numbering is required.Peer reviewe

    Local approximability of max-min and min-max linear programs

    Get PDF
    In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0. In a min-max LP, the objective is to minimise ρ subject to Ax ≤ ρ1, Cx ≥ 1, and x ≥ 0. The matrices A and C are nonnegative and sparse: each row ai of A has at most ΔI positive elements, and each row ck of C has at most ΔK positive elements. We study the approximability of max-min LPs and min-max LPs in a distributed setting; in particular, we focus on local algorithms (constant-time distributed algorithms). We show that for any ΔI ≥ 2, ΔK ≥ 2, and ε > 0 there exists a local algorithm that achieves the approximation ratio ΔI (1 − 1/ΔK) + ε. We also show that this result is the best possible: no local algorithm can achieve the approximation ratio ΔI (1 − 1/ΔK) for any ΔI ≥ 2 and ΔK ≥ 2.Peer reviewe
    corecore