22,232 research outputs found

    A simple load balancing problem with decentralized information

    Full text link
    The following load balancing problem is investigated in discrete time: A service system consists of two service stations and two controllers, one in front of each station. The service stations provide the same service with identical service time distributions and identical waiting costs. Customers requiring service arrive at a controller's site and are routed to one of the two stations by the controller. The processes describing the two arrival streams are identical. Each controller has perfect knowledge of the workload in its own station and receives information about the other station's workload with one unit of delay. The controllers' routing strategies that minimize the customers' total flowtime are determined for a certain range of the parameters that describe the arrival process and the service distribution. Specifically, we prove that optimal routing strategies are characterized by thresholds that are either precisely specified or take one of two possible values.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45840/1/186_2005_Article_BF01246331.pd

    Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees

    Get PDF
    The operation of the power grid is becoming more stressed, due to the addition of new large loads represented by Electric Vehicles (EVs) and a more intermittent supply due to the incorporation of renewable sources. As a consequence, the coordination and control of projected EV demand in a network of fast charging stations becomes a critical and challenging problem. In this paper, we introduce a game theoretic based decentralized control mechanism to alleviate negative impacts from the EV demand. The proposed mechanism takes into consideration the non-uniform spatial distribution of EVs that induces uneven power demand at each charging facility, and aims to: (i) avoid straining grid resources by offering price incentives so that customers accept being routed to less busy stations, (ii) maximize total revenue by serving more customers with the same amount of grid resources, and (iii) provide charging service to customers with a certain level of Quality-of-Service (QoS), the latter defined as the long term customer blocking probability. We examine three scenarios of increased complexity that gradually approximate real world settings. The obtained results show that the proposed framework leads to substantial performance improvements in terms of the aforementioned goals, when compared to current state of affairs.Comment: Accepted for Publication in IEEE Transactions on Smart Gri

    Dynamic resource allocation scheme for distributed heterogeneous computer systems

    Get PDF
    This invention relates to a resource allocation in computer systems, and more particularly, to a method and associated apparatus for shortening response time and improving efficiency of a heterogeneous distributed networked computer system by reallocating the jobs queued up for busy nodes to idle, or less-busy nodes. In accordance with the algorithm (SIDA for short), the load-sharing is initiated by the server device in a manner such that extra overhead in not imposed on the system during heavily-loaded conditions. The algorithm employed in the present invention uses a dual-mode, server-initiated approach. Jobs are transferred from heavily burdened nodes (i.e., over a high threshold limit) to low burdened nodes at the initiation of the receiving node when: (1) a job finishes at a node which is burdened below a pre-established threshold level, or (2) a node is idle for a period of time as established by a wakeup timer at the node. The invention uses a combination of the local queue length and the local service rate ratio at each node as the workload indicator
    • …
    corecore