64 research outputs found

    Zeno meets modern science

    Get PDF
    ``No one has ever touched Zeno without refuting him''. We will not refute Zeno in this paper. Instead we review some unexpected encounters of Zeno with modern science. The paper begins with a brief biography of Zeno of Elea followed by his famous paradoxes of motion. Reflections on continuity of space and time lead us to Banach and Tarski and to their celebrated paradox, which is in fact not a paradox at all but a strict mathematical theorem, although very counterintuitive. Quantum mechanics brings another flavour in Zeno paradoxes. Quantum Zeno and anti-Zeno effects are really paradoxical but now experimental facts. Then we discuss supertasks and bifurcated supertasks. The concept of localization leads us to Newton and Wigner and to interesting phenomenon of quantum revivals. At last we note that the paradoxical idea of timeless universe, defended by Zeno and Parmenides at ancient times, is still alive in quantum gravity. The list of references that follows is necessarily incomplete but we hope it will assist interested reader to fill in details.Comment: 40 pages, LaTeX, 10 figure

    Some Thoughts on Hypercomputation

    Full text link
    Hypercomputation is a relatively new branch of computer science that emerged from the idea that the Church--Turing Thesis, which is supposed to describe what is computable and what is noncomputable, cannot possible be true. Because of its apparent validity, the Church--Turing Thesis has been used to investigate the possible limits of intelligence of any imaginable life form, and, consequently, the limits of information processing, since living beings are, among others, information processors. However, in the light of hypercomputation, which seems to be feasibly in our universe, one cannot impose arbitrary limits to what intelligence can achieve unless there are specific physical laws that prohibit the realization of something. In addition, hypercomputation allows us to ponder about aspects of communication between intelligent beings that have not been considered befor

    The dome: An unexpectedly simple failure of determinism

    Get PDF
    Newton's equations of motion tell us that a mass at rest at the apex of a dome with the shape specified here can spontaneously move. It has been suggested that this indeterminism should be discounted since it draws on an incomplete rendering of Newtonian physics, or it is "unphysical," or it employs illicit idealizations. I analyze and reject each of these reasons. Copyright 2008 by the Philosophy of Science Association. All rights reserved

    How to Build an Infinite Lottery Machine

    Get PDF
    An infinite lottery machine is used as a foil for testing the reach of inductive inference, since inferences concerning it require novel extensions of probability. Its use is defensible if there is some sense in which the lottery is physically possible, even if exotic physics is needed. I argue that exotic physics is needed and describe several proposals that fail and at least one that succeeds well enough

    Temporal breakdown and Borel resummation in the complex Langevin method

    Full text link
    We reexamine the Parisi-Klauder conjecture for complex e^{i\theta/2} \phi^4 measures with a Wick rotation angle 0 <= \theta/2 < \pi/2 interpolating between Euclidean and Lorentzian signature. Our main result is that the asymptotics for short stochastic times t encapsulates information also about the equilibrium aspects. The moments evaluated with the complex measure and with the real measure defined by the stochastic Langevin equation have the same t -> 0 asymptotic expansion which is shown to be Borel summable. The Borel transform correctly reproduces the time dependent moments of the complex measure for all t, including their t -> infinity equilibrium values. On the other hand the results of a direct numerical simulation of the Langevin moments are found to disagree from the `correct' result for t larger than a finite t_c. The breakdown time t_c increases powerlike for decreasing strength of the noise's imaginary part but cannot be excluded to be finite for purely real noise. To ascertain the discrepancy we also compute the real equilibrium distribution for complex noise explicitly and verify that its moments differ from those obtained with the complex measure.Comment: title changed, results on parameter dependence of t_c added, exposition improved. 39 pages, 7 figure

    How to Build an Infinite Lottery Machine

    Get PDF
    An infinite lottery machine is used as a foil for testing the reach of inductive inference, since inferences concerning it require novel extensions of probability. Its use is defensible if there is some sense in which the lottery is physically possible, even if exotic physics is needed. I argue that exotic physics is needed and describe several proposals that fail and at least one that succeeds well enough
    corecore