2,879 research outputs found

    A new ADMM algorithm for the Euclidean median and its application to robust patch regression

    Full text link
    The Euclidean Median (EM) of a set of points Ω\Omega in an Euclidean space is the point x minimizing the (weighted) sum of the Euclidean distances of x to the points in Ω\Omega. While there exits no closed-form expression for the EM, it can nevertheless be computed using iterative methods such as the Wieszfeld algorithm. The EM has classically been used as a robust estimator of centrality for multivariate data. It was recently demonstrated that the EM can be used to perform robust patch-based denoising of images by generalizing the popular Non-Local Means algorithm. In this paper, we propose a novel algorithm for computing the EM (and its box-constrained counterpart) using variable splitting and the method of augmented Lagrangian. The attractive feature of this approach is that the subproblems involved in the ADMM-based optimization of the augmented Lagrangian can be resolved using simple closed-form projections. The proposed ADMM solver is used for robust patch-based image denoising and is shown to exhibit faster convergence compared to an existing solver.Comment: 5 pages, 3 figures, 1 table. To appear in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, April 19-24, 201

    Semi-Global Exponential Stability of Augmented Primal-Dual Gradient Dynamics for Constrained Convex Optimization

    Full text link
    Primal-dual gradient dynamics that find saddle points of a Lagrangian have been widely employed for handling constrained optimization problems. Building on existing methods, we extend the augmented primal-dual gradient dynamics (Aug-PDGD) to incorporate general convex and nonlinear inequality constraints, and we establish its semi-global exponential stability when the objective function is strongly convex. We also provide an example of a strongly convex quadratic program of which the Aug-PDGD fails to achieve global exponential stability. Numerical simulation also suggests that the exponential convergence rate could depend on the initial distance to the KKT point

    Super-Linear Convergence of Dual Augmented-Lagrangian Algorithm for Sparsity Regularized Estimation

    Full text link
    We analyze the convergence behaviour of a recently proposed algorithm for regularized estimation called Dual Augmented Lagrangian (DAL). Our analysis is based on a new interpretation of DAL as a proximal minimization algorithm. We theoretically show under some conditions that DAL converges super-linearly in a non-asymptotic and global sense. Due to a special modelling of sparse estimation problems in the context of machine learning, the assumptions we make are milder and more natural than those made in conventional analysis of augmented Lagrangian algorithms. In addition, the new interpretation enables us to generalize DAL to wide varieties of sparse estimation problems. We experimentally confirm our analysis in a large scale 1\ell_1-regularized logistic regression problem and extensively compare the efficiency of DAL algorithm to previously proposed algorithms on both synthetic and benchmark datasets.Comment: 51 pages, 9 figure

    Discrete-Continuous ADMM for Transductive Inference in Higher-Order MRFs

    Full text link
    This paper introduces a novel algorithm for transductive inference in higher-order MRFs, where the unary energies are parameterized by a variable classifier. The considered task is posed as a joint optimization problem in the continuous classifier parameters and the discrete label variables. In contrast to prior approaches such as convex relaxations, we propose an advantageous decoupling of the objective function into discrete and continuous subproblems and a novel, efficient optimization method related to ADMM. This approach preserves integrality of the discrete label variables and guarantees global convergence to a critical point. We demonstrate the advantages of our approach in several experiments including video object segmentation on the DAVIS data set and interactive image segmentation
    corecore