517 research outputs found

    Segmentation of skin lesions in 2D and 3D ultrasound images using a spatially coherent generalized Rayleigh mixture model

    Get PDF
    This paper addresses the problem of jointly estimating the statistical distribution and segmenting lesions in multiple-tissue high-frequency skin ultrasound images. The distribution of multiple-tissue images is modeled as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is modeled by enforcing local dependence between the mixture components. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is then proposed to jointly estimate the mixture parameters and a label-vector associating each voxel to a tissue. More precisely, a hybrid Metropolis-within-Gibbs sampler is used to draw samples that are asymptotically distributed according to the posterior distribution of the Bayesian model. The Bayesian estimators of the model parameters are then computed from the generated samples. Simulation results are conducted on synthetic data to illustrate the performance of the proposed estimation strategy. The method is then successfully applied to the segmentation of in vivo skin tumors in high-frequency 2-D and 3-D ultrasound images

    Robust and fully automated segmentation of mandible from CT scans

    Full text link
    Mandible bone segmentation from computed tomography (CT) scans is challenging due to mandible's structural irregularities, complex shape patterns, and lack of contrast in joints. Furthermore, connections of teeth to mandible and mandible to remaining parts of the skull make it extremely difficult to identify mandible boundary automatically. This study addresses these challenges by proposing a novel framework where we define the segmentation as two complementary tasks: recognition and delineation. For recognition, we use random forest regression to localize mandible in 3D. For delineation, we propose to use 3D gradient-based fuzzy connectedness (FC) image segmentation algorithm, operating on the recognized mandible sub-volume. Despite heavy CT artifacts and dental fillings, consisting half of the CT image data in our experiments, we have achieved highly accurate detection and delineation results. Specifically, detection accuracy more than 96% (measured by union of intersection (UoI)), the delineation accuracy of 91% (measured by dice similarity coefficient), and less than 1 mm in shape mismatch (Hausdorff Distance) were found.Comment: 4 pages, 5 figures, IEEE International Symposium on Biomedical Imaging (ISBI) 201

    Machine Learning towards General Medical Image Segmentation

    Get PDF
    The quality of patient care associated with diagnostic radiology is proportionate to a physician\u27s workload. Segmentation is a fundamental limiting precursor to diagnostic and therapeutic procedures. Advances in machine learning aims to increase diagnostic efficiency to replace single applications with generalized algorithms. We approached segmentation as a multitask shape regression problem, simultaneously predicting coordinates on an object\u27s contour while jointly capturing global shape information. Shape regression models inherent point correlations to recover ambiguous boundaries not supported by clear edges and region homogeneity. Its capabilities was investigated using multi-output support vector regression (MSVR) on head and neck (HaN) CT images. Subsequently, we incorporated multiplane and multimodality spinal images and presented the first deep learning multiapplication framework for shape regression, the holistic multitask regression network (HMR-Net). MSVR and HMR-Net\u27s performance were comparable or superior to state-of-the-art algorithms. Multiapplication frameworks bridges any technical knowledge gaps and increases workflow efficiency

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Unsupervised Myocardial Segmentation for Cardiac BOLD

    Get PDF
    A fully automated 2-D+time myocardial segmentation framework is proposed for cardiac magnetic resonance (CMR) blood-oxygen-level-dependent (BOLD) data sets. Ischemia detection with CINE BOLD CMR relies on spatio-temporal patterns in myocardial intensity, but these patterns also trouble supervised segmentation methods, the de facto standard for myocardial segmentation in cine MRI. Segmentation errors severely undermine the accurate extraction of these patterns. In this paper, we build a joint motion and appearance method that relies on dictionary learning to find a suitable subspace.Our method is based on variational pre-processing and spatial regularization using Markov random fields, to further improve performance. The superiority of the proposed segmentation technique is demonstrated on a data set containing cardiac phase resolved BOLD MR and standard CINE MR image sequences acquired in baseline and is chemic condition across ten canine subjects. Our unsupervised approach outperforms even supervised state-of-the-art segmentation techniques by at least 10% when using Dice to measure accuracy on BOLD data and performs at par for standard CINE MR. Furthermore, a novel segmental analysis method attuned for BOLD time series is utilized to demonstrate the effectiveness of the proposed method in preserving key BOLD patterns
    corecore