3 research outputs found

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    Application of HPM to Solve Unsteady Squeezing Flow of a Second-Grade Fluid between Circular Plates

    Get PDF
    In this article, Homotopy Perturbation Method (HPM) is used to provide two approximate solutions to the nonlinear differential equation that describes the behaviour for the unsteady squeezing flow of a second grade fluid between circular plates. Comparing results between approximate and numerical solutions shows that our results are capable to provide an accurate solution and are extremely efficient
    corecore