985 research outputs found

    A Novel Algorithm for Cooperative Distributed Sequential Spectrum Sensing in Cognitive Radio

    Full text link
    This paper considers cooperative spectrum sensing in Cognitive Radios. In our previous work we have developed DualSPRT, a distributed algorithm for cooperative spectrum sensing using Sequential Probability Ratio Test (SPRT) at the Cognitive Radios as well as at the fusion center. This algorithm works well, but is not optimal. In this paper we propose an improved algorithm- SPRT-CSPRT, which is motivated from Cumulative Sum Procedures (CUSUM). We analyse it theoretically. We also modify this algorithm to handle uncertainties in SNR's and fading.Comment: This paper has been withdrawn by the author due to the submission of detailed journal version of the same paper, to arXi

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    A Trade-off Analysis of Energy Detectors and Partitioned Search for Primary Detection

    Get PDF
    Cognitive radios aim to coexist in the unused spectrum bands which are licensed to primary users without harming the primary transmission/reception. For a cognitive radio, it is important to detect the band in which the primary is operating as fast as possible and with high reliability in order to adapt its transmission. In this work, we propose P-partitioning method in combination with energy detectors for the search of the band that the primary user is operating. In the P-partitioning method, the spectrum bands are categorized into P groups and the group that the primary band belongs to is detected in a recursive fashion. The energy detector operates on each group and the test statistics is the total energy received in the bands belonging to the group. The proposed search technique has detection time PlogP(N), where N is the number of bands in the spectrum. When P = N, the proposed scheme is equivalent to linear search with detection time N. We study the performance of the proposed scheme for a single non-cooperative radio and also for multiple cooperating radios. For a single cognitive radio, we provide an upper bound on the probability of correct detection which presents two different regimes of operation. In the low SNR regime, although it is counter-intuitive the partitioning improves the probability of detection. This is due an averaging effect when the signal energy in different bands are accumulated to obtain the energy contribution from a group. In the high SNR regime, performance degrades with partitioning. In addition, we observe that user cooperation improves the performance in the high SNR regimes

    A Secure Cooperative Sensing Protocol for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. Spectrum sensing is more accurate if jointly performed by several reliable nodes. Even though cooperative sensing is an active area of research, the secure authentication of local sensing reports remains unsolved, thus empowering false results. This paper presents a distributed protocol based on digital signatures and hash functions, and an analysis of its security features. The system allows determining a final sensing decision from multiple sources in a quick and secure way.Las redes de radio cognitiva detectora de espectro se las arreglan para operar en las nuevas bandas sin molestar a los usuarios con licencia. La detección de espectro es más precisa si el conjunto está realizado por varios nodos fiables. Aunque la detección cooperativa es un área activa de investigación, la autenticación segura de informes locales de detección no ha sido resuelta, por lo tanto se pueden dar resultados falsos. Este trabajo presenta un protocolo distribuido basado en firmas digitales y en funciones hash, y un análisis de sus características de seguridad. El sistema permite determinar una decisión final de detección de múltiples fuentes de una manera rápida y segura.Les xarxes de ràdio cognitiva detectora d'espectre se les arreglen per operar en les noves bandes sense destorbar els usuaris amb llicència. La detecció d'espectre és més precisa si el conjunt està realitzat per diversos nodes fiables. Encara que la detecció cooperativa és una àrea activa d'investigació, l'autenticació segura d'informes locals de detecció no ha estat resolta, per tant es poden donar resultats falsos. Aquest treball presenta un protocol distribuït basat en signatures digitals i en funcions hash, i una anàlisi de les seves característiques de seguretat. El sistema permet determinar una decisió final de detecció de múltiples fonts d'una manera ràpida i segura

    Energy efficient scheme based on simultaneous transmission of the local decisions in cooperative spectrum sensing

    Get PDF
    A common concern regarding cooperative spectrum sensing (CSS) schemes is the occupied bandwidth and the energy consumption during the transmissions of sensing information to the fusion center over the reporting control channels. This concern is intensified if the number of cooperating secondary users in the network is large. This article presents a new fusion strategy for a CSS scheme, aiming at increasing the energy efficiency of a recently proposed bandwidth-efficient fusion scheme. Analytical results and computational simulations unveil a high increase in energy efficiency when compared with the original approach, yet achieving better performances in some situations, and lower implementation complexity

    Censored Truncated Sequential Spectrum Sensing for Cognitive Radio Networks

    Full text link
    Reliable spectrum sensing is a key functionality of a cognitive radio network. Cooperative spectrum sensing improves the detection reliability of a cognitive radio system but also increases the system energy consumption which is a critical factor particularly for low-power wireless technologies. A censored truncated sequential spectrum sensing technique is considered as an energy-saving approach. To design the underlying sensing parameters, the maximum energy consumption per sensor is minimized subject to a lower bounded global probability of detection and an upper bounded false alarm rate. This way both the interference to the primary user due to miss detection and the network throughput as a result of a low false alarm rate is controlled. We compare the performance of the proposed scheme with a fixed sample size censoring scheme under different scenarios. It is shown that as the sensing cost of the cognitive radios increases, the energy efficiency of the censored truncated sequential approach grows significantly.Comment: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6464630&isnumber=646450
    corecore