1,927 research outputs found

    Algorithms for CVaR Optimization in MDPs

    Full text link
    In many sequential decision-making problems we may want to manage risk by minimizing some measure of variability in costs in addition to minimizing a standard criterion. Conditional value-at-risk (CVaR) is a relatively new risk measure that addresses some of the shortcomings of the well-known variance-related risk measures, and because of its computational efficiencies has gained popularity in finance and operations research. In this paper, we consider the mean-CVaR optimization problem in MDPs. We first derive a formula for computing the gradient of this risk-sensitive objective function. We then devise policy gradient and actor-critic algorithms that each uses a specific method to estimate this gradient and updates the policy parameters in the descent direction. We establish the convergence of our algorithms to locally risk-sensitive optimal policies. Finally, we demonstrate the usefulness of our algorithms in an optimal stopping problem.Comment: Submitted to NIPS 1

    Optimizing the CVaR via Sampling

    Full text link
    Conditional Value at Risk (CVaR) is a prominent risk measure that is being used extensively in various domains. We develop a new formula for the gradient of the CVaR in the form of a conditional expectation. Based on this formula, we propose a novel sampling-based estimator for the CVaR gradient, in the spirit of the likelihood-ratio method. We analyze the bias of the estimator, and prove the convergence of a corresponding stochastic gradient descent algorithm to a local CVaR optimum. Our method allows to consider CVaR optimization in new domains. As an example, we consider a reinforcement learning application, and learn a risk-sensitive controller for the game of Tetris.Comment: To appear in AAAI 201

    Risk-Sensitive Reinforcement Learning with Exponential Criteria

    Full text link
    While reinforcement learning has shown experimental success in a number of applications, it is known to be sensitive to noise and perturbations in the parameters of the system, leading to high variance in the total reward amongst different episodes on slightly different environments. To introduce robustness, as well as sample efficiency, risk-sensitive reinforcement learning methods are being thoroughly studied. In this work, we provide a definition of robust reinforcement learning policies and formulate a risk-sensitive reinforcement learning problem to approximate them, by solving an optimization problem with respect to a modified objective based on exponential criteria. In particular, we study a model-free risk-sensitive variation of the widely-used Monte Carlo Policy Gradient algorithm, and introduce a novel risk-sensitive online Actor-Critic algorithm based on solving a multiplicative Bellman equation using stochastic approximation updates. Analytical results suggest that the use of exponential criteria generalizes commonly used ad-hoc regularization approaches, improves sample efficiency, and introduces robustness with respect to perturbations in the model parameters and the environment. The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments

    Actor-Critic Algorithms for Risk-Sensitive MDPs

    Get PDF
    In many sequential decision-making problems we may want to manage risk by minimizing some measure of variability in rewards in addition to maximizing a standard criterion. Variance-related risk measures are among the most common risk-sensitive criteria in finance and operations research. However, optimizing many such criteria is known to be a hard problem. In this paper, we consider both discounted and average reward Markov decision processes. For each formulation, we first define a measure of variability for a policy, which in turn gives us a set of risk-sensitive criteria to optimize. For each of these criteria, we derive a formula for computing its gradient. We then devise actor-critic algorithms for estimating the gradient and updating the policy parameters in the ascent direction. We establish the convergence of our algorithms to locally risk-sensitive optimal policies. Finally, we demonstrate the usefulness of our algorithms in a traffic signal control application
    corecore