3,006 research outputs found

    An Integrated Neural Network-Event-Related Potentials Model of Temporal and Probability Context Effects on Event Categorization

    Full text link
    We present a neural network that adapts and integrates several preexisting or new modules to categorize events in short term memory (STM), encode temporal order in working memory, evaluate timing and probability context in medium and long term memory. The model shows how processed contextual information modulates event recognition and categorization, focal attention and incentive motivation. The model is based on a compendium of Event Related Potentials (ERPs) and behavioral results either collected by the authors or compiled from the classical ERP literature. Its hallmark is, at the functional level, the interplay of memory registers endowed with widely different dynamical ranges, and at the structural level, the attempt to relate the different modules to known anatomical structures.INSERM; NATO; DGA/DRET (911470/A000/DRET/DS/DR

    A Multi Hidden Recurrent Neural Network with a Modified Grey Wolf Optimizer

    Full text link
    Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.Comment: 34 pages, published in PLoS ON

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    A Neural Network Model for the Development of Simple and Complex Cell Receptive Fields Within Cortical Maps of Orientation and Ocular Dominance

    Full text link
    Prenatal development of the primary visual cortex leads to simple cells with spatially distinct and oriented ON and OFF subregions. These simple cells are organized into spatial maps of orientation and ocular dominance that exhibit singularities, fractures, and linear zones. On a finer spatial scale, simple cells occur that are sensitive to similar orientations but opposite contrast polarities, and exhibit both even-symmetric and odd-symmetric receptive fields. Pooling of outputs from oppositely polarized simple cells leads to complex cells that respond to both contrast polarities. A neural network model is described which simulates how simple and complex cells self-organize starting from unsegregated and unoriented geniculocortical inputs during prenatal development. Neighboring simple cells that are sensitive to opposite contrast polarities develop from a combination of spatially short-range inhibition and high-gain recurrent habituative excitation between cells that obey membrane equations. Habituation, or depression, of synapses controls reset of cell activations both through enhanced ON responses and OFF antagonistic rebounds. Orientation and ocular dominance maps form when high-gain medium-range recurrent excitation and long-range inhibition interact with the short-range mechanisms. The resulting structure clarifies how simple and complex cells contribute to perceptual processes such as texture segregation and perceptual grouping.Air Force Office of Scientific Research (F49620-92-J-0334); British Petroleum (BP 89A-1204); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-4100); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409

    What is the functional role of adult neurogenesis in the hippocampus?

    Get PDF
    The dentate gyrus is part of the hippocampal memory system and special in that it generates new neurons throughout life. Here we discuss the question of what the functional role of these new neurons might be. Our hypothesis is that they help the dentate gyrus to avoid the problem of catastrophic interference when adapting to new environments. We assume that old neurons are rather stable and preserve an optimal encoding learned for known environments while new neurons are plastic to adapt to those features that are qualitatively new in a new environment. A simple network simulation demonstrates that adding new plastic neurons is indeed a successful strategy for adaptation without catastrophic interference

    Navigation Control of an Automated Guided Underwater Robot using Neural Network Technique

    Get PDF
    In recent years, under water robots play an important role in various under water operations. There is an increase in research in this area because of the application of autonomous underwater robots in several issues like exploring under water environment and resource, doing scientific and military tasks under water. We need good maneuvering capabilities and a well precision for moving in a specified track in these applications. However, control of these under water bots become very difficult due to the highly non-linear and dynamic characteristics of the underwater world. The logical answer to this problem is the application of non-linear controllers. As neural networks (NNs) are characterized by flexibility and an aptitude for dealing with non-linear problems, they are envisaged to be beneficial when used on underwater robots. In this research our artificial intelligence system is based on neural network model for navigation of an Automated Underwater robot in unpredictable and imprecise environment. Thus the back propagation algorithm has been used for the steering analysis of the underwater robot when it is encountered by a left, right and front as well as top obstacle. After training the neural network the neural network pattern was used in the controller of the underwater robot. The simulation of underwater robot under various obstacle conditions are shown using MATLAB

    Impact of noise on a dynamical system: prediction and uncertainties from a swarm-optimized neural network

    Get PDF
    In this study, an artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey--Glass chaotic time series in the short-term x(t+6)x(t+6). The performance prediction was evaluated and compared with another studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called {\it stochastic} hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute uncertainties of predictions for noisy Mackey--Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σN\sigma_{N}) from 0.01 to 0.1.Comment: 11 pages, 8 figure
    corecore