3 research outputs found

    A Comparative Study of EAG and PBIL on Large-Scale Global Optimization Problems

    Get PDF
    Estimation of Distribution Algorithms (EDAs) use global statistical information effectively to sample offspring disregarding the location information of the locally optimal solutions found so far. Evolutionary Algorithm with Guided Mutation (EAG) combines global statistical information and location information to sample offspring, aiming that this hybridization improves the search and optimization process. This paper discusses a comparative study of Population-Based Incremental Learning (PBIL), a representative of EDAs, and EAG on large-scale global optimization problems. We implemented PBIL and EAG to build an experimental setup upon which simulations were run. The performance of these algorithms was analyzed in terms of solution quality and computational cost. We found that EAG performed better than PBIL in attaining a good quality solution, but the latter performed better in terms of computational cost. We also compared the performance of EAG and PBIL with MA-SW-Chains, the winner of CEC’2010, and found that the overall performance of EAG is comparable to MA-SW-Chains

    A Comparative Study of EAG and PBIL on Large-Scale Global Optimization Problems

    Get PDF
    Estimation of Distribution Algorithms (EDAs) use global statistical information effectively to sample offspring disregarding the location information of the locally optimal solutions found so far. Evolutionary Algorithm with Guided Mutation (EAG) combines global statistical information and location information to sample offspring, aiming that this hybridization improves the search and optimization process. This paper discusses a comparative study of Population-Based Incremental Learning (PBIL), a representative of EDAs, and EAG on large-scale global optimization problems. We implemented PBIL and EAG to build an experimental setup upon which simulations were run. The performance of these algorithms was analyzed in terms of solution quality and computational cost. We found that EAG performed better than PBIL in attaining a good quality solution, but the latter performed better in terms of computational cost. We also compared the performance of EAG and PBIL with MA-SW-Chains, the winner of CEC'2010, and found that the overall performance of EAG is comparable to MA-SW-Chains

    A self-guided genetic algorithm for flowshop scheduling problems

    No full text
    This paper proposed Self-Guided genetic algorithm, which is one of the algorithms in the category of evolutionary algorithm based on probabilistic models (EAPM), to solve strong NP-Hard flowshop scheduling problems with the minimization of makespan. Most EAPM research explicitly used the probabilistic model from the parental distribution, then generated solutions by sampling from the probabilistic model without using genetic operators. Although EAPM is promising in solving different kinds of problems, Self-Guided GA doesn't intend to generate solution by the probabilistic model directly because the time-complexity is high when we solve combinatorial problems, particularly the sequencing ones. As a result, the probabilistic model serves as a fitness surrogate which estimates the fitness of the new solution beforehand in this research. So the probabilistic model is used to guide the evolutionary process of crossover and mutation. This research studied the flowshop scheduling problems and the corresponding experiment were conducted. From the results, it shows that the Self-Guided GA outperformed other algorithms significantly. In addition, Self-Guided GA works more efficiently than previous EAPM. As a result, Self-Guided GA is promisingin solving the flowshop scheduling problems. © 2009 IEEE
    corecore