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Estimation of Distribution Algorithms (EDAs) use global statistical information effectively to sample offspring disregarding the
location information of the locally optimal solutions found so far. Evolutionary Algorithm with Guided Mutation (EAG) combines
global statistical information and location information to sample offspring, aiming that this hybridization improves the search and
optimization process. This paper discusses a comparative study of Population-Based Incremental Learning (PBIL), a representative
of EDAs, and EAG on large-scale global optimization problems. We implemented PBIL and EAG to build an experimental setup
upon which simulations were run. The performance of these algorithms was analyzed in terms of solution quality and computational
cost. We found that EAG performed better than PBIL in attaining a good quality solution, but the latter performed better in terms
of computational cost. We also compared the performance of EAG and PBIL with MA-SW-Chains, the winner of CEC’2010, and

found that the overall performance of EAG is comparable to MA-SW-Chains.

1. Introduction

Many search and optimization techniques have been devel-
oped to solve complex optimization problems, like travelling
salesman problem. One widely studied approach in this area
is Estimation of Distribution Algorithms (EDAs) [1-3]. The
main difference between traditional evolutionary algorithms
[4-6], for example, genetic algorithms, and EDAs lies in
their offspring generation strategies. Traditional evolutionary
algorithms use crossover and mutation to generate new
solutions, whereas EDAs use probabilistic models to sample
oftspring. The probabilistic models are based on global sta-
tistical information, extracted from population. According to
proximate optimality principle [7], which assumes that good
solutions have similar structure, an ideal offspring generator
should be able to generate a solution that is close to the
best solutions found so far. In this respect, both evolutionary
algorithms and EDAs have their own merits and demerits.
Evolutionary algorithms allow that the new solutions would
not be far away from the best solutions found so far, whereas
EDAs have no mechanism to directly control the similarity
between an offspring and its parent. On the other hand, EDAs
better control the similarity among solutions in the current

population because they use the global statistical information
effectively to sample offspring.

Evolutionary Algorithm with Guided Mutation (EAG)
[8] combines global statistical information (i.e., the EDA
approach) and location information (i.e., the traditional
evolutionary algorithmic approach) to sample offspring. The
authors evaluated the performance of EAG on maximum
clique problem and showed promising results. In [9], Khan
used numerical optimization functions [10, 11] and standard
genetic algorithm test problems [12, 13] to compare the per-
formance of EAG against two classic EDAs, Population-Based
Incremental Learning (PBIL) [14] and Compact Genetic
Algorithm [15]. The previous studies revealed that EAG
performed better than its competitors. However, so far, the
performance of EAG was measured on small-scale optimiza-
tion problems. Therefore, it is unclear to us how scalable EAG
is.

In this study, we evaluated thoroughly the performance
of EAG against PBIL on a set of benchmark functions for
large-scale global optimization problems [16]. The results
of these two algorithms are also compared with MA-SW-
Chains [17], the winner of CEC’2010 competition [16]. This
paper contributes in two different ways. First, our results
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Require:

if random(0, 1) < y then

« (learning rate), y (mutation rate), § (mutation shift),

I (Iength of the probability vector), and N (population size)
(1) Initialize the probability vector p

(2) Repeat Steps 3 to 7 until stopping criteria are met

(3) Generate a population of N solutions using p

(4) Evaluate the fitness of the solutions (generated in Step 3)
(5) Select the k best solutions from N

(6) Update the probability vector p as following:

k
p”l =(1 —(x)pt +(X<%Zb:>
i=1
(7) Mutate the probability vector p as following:

P =1-8p +s-b

PseuDpoCODE 1: The PBIL algorithm.

turther strengthen the previous findings that a combination
of EDAs and traditional evolutionary algorithms works better
than standalone EDAs or evolutionary algorithms. Second,
our findings indicate that, originally developed for discrete
optimization problems, EAG is also suitable for continuous
optimization problems. The algorithm is scalable and its
performance is comparable to MA-SW-Chains, the winner of
CEC2010.

The rest of this paper is organized as follows. In Section 2,
we give a background overview of PBIL, EAG, other closely
related EDA approaches, and large-scale global optimization
problems. The empirical study is outlined in Section 3. We
discuss main findings and limitations of our approach in
Section 4. The paper concludes in Section 5.

2. Background

2.1. PBIL. PBIL is a statistical approach to evolutionary com-
putation in which solutions are represented as fixed length
binary strings b = (b;,b,,b;,...,b,). A probability vector
p = (p1> P> P3>---»> Pp) is used to sample offspring. In this
vector, p; measures the distribution of 1's (and consequently
05s) at the ith position of the simulated population in a given
search space. Initially, these probabilities are set to 0.5 at each
position to give a uniform distribution over the search space.
Solutions are generated using p; for each solution b a 1 is
generated at position b, with probability p;. The probabilities
in p are then moved gradually towards 1 or 0 as the search
progresses. The PBIL algorithm is illustrated in Pseudocode 1.
Apart from stopping criteria and the number of best
solutions (k) used to update the probability vector, PBIL is
sensitive to four main parameters: learning rate («), mutation
rate (¢), mutation shift (§), and population size (N). Among
these, « and & are kept low (e.g., 0.1 and 0.02, resp.) [14].

2.2. EAG. EAG (Evolutionary Algorithm with Guided Muta-
tion) is a hybrid of evolutionary algorithms and EDAs.
Variation operators in evolutionary algorithms directly use
the location information of the locally optimal solutions
found so far, disregarding the distribution of promising

solutions in the search space. The offspring thus produced
are close to their parents, but they may be far away from
other best solutions in the current population. This is because
evolutionary algorithms do not benefit from the global
statistical information. On the other hand, EDAs use the
global statistical information effectively to sample offspring,
but they disregard the location information of the optimal
solutions found so far. This is an important limitation in
EDAs because there is no mechanism to directly control
the similarity between the new solutions and the current
“good” solutions. EAG combines global statistical informa-
tion and the location information of optimal solutions to
sample offspring, aiming at the fact that this hybridization
would improve the solution quality. A new variation operator
“guided mutation” is developed in EAG. The pseudocode of
EAG is similar to PBIL except that the solutions for the next
generation are produced using the guided-mutation operator.
The guided-mutation operator is illustrated in Pseudocode 2.

The guided-mutation operator is sensitive to the guided-
mutation rate 3. The operator decides on the basis of 3 to
sample new offspring by copying the location information
either from the parent or from the probability vector p;
with the larger value of 3, more genes of the offspring (y)
are sampled from the probability vector. EAG is sensitive to
learning rate (1), guided-mutation rate (f3), and population
size (N) [8].

2.3. Other Related Approaches. A large body of work has
been published on EDAs [1-3, 14, 15, 18-26]. Here we review
a piece of work, which is devoted to hybrid approaches in
EDAs [18, 21-25]; for a detailed review on EDAs, please
see [27]. Mahnig and Mihlenbein used a hybrid approach
in which mutation operators were introduced into EDAs
using Bayesian prior [18]. They found that the introduction
of mutation in EDAs greatly decreases the dependence
of an optimal population size. In another study, Handa
incorporated mutation operators into EDAs to maintain the
diversities in the EDA population [21]. His results show that
mutation improves the search ability of EDAs, even with
a small population size. In [23], Santana et al. combined
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fori=1toldo
h = random(0, 1)
if B> h
if plil>h
ylil =1
else
yli]=0

yli] = bli]
end_for

Require:
B (guided-mutation rate),
P = D1 P> P (probability vector),

b=0b,,b,...,b (solution vector, b, € 0,1)

/I sample ith bit from the probability vector, p

else /I copy ith bit from the parent, b

Pseupocopk 2: The guided-mutation operator.

EDAs with the variable neighborhood search (VNS) heuristic
and found that this hybrid approach performed reasonably
well as compared to simple EDA or simple VNS approaches.
It is worth mentioning here that the problem dimensions
explored in these studies were relatively small; for example,
in [21] the problem dimensions were not more than 70.
In yet another study [24], Valdez et al. developed a hybrid
algorithm that combines EDA with support vector machine
for selection of key feature genes. They compared their
method with some other hybrid EDAs and found it effective.
In a very recent study [25], the authors presented an EDA
based on Gaussian probability distribution. They showed that
on higher dimension problems their algorithm offered better
performance than its competitors.

2.4. Large-Scale Global Optimization. In any empirical inves-
tigation of evolutionary algorithms, the selection of test
problems is always vital. Care must be taken to try and
select problems that will hopefully prove illuminating for
the investigation at hand. As a rule of thumb, at least two
factors are often considered while selecting test problems:
(a) comparison with the previous findings/results and (b)
representativeness. Usually, a well-studied and broad range of
problems are suitable because they can provide useful means
of comparison with the previous experimental results.

In recent years, evolutionary computation community
has seen a substantial number of studies to evaluate the
performance of evolutionary algorithms on large-scale global
optimization problems, such as those with more than one
hundred decision variables [16, 28]. These test problems
pose significant challenges not only because of their high
dimensionality, that is, “curse of dimensionality” [29], but
also because most of them are nonseparable. A function of
n variables is separable if it can be rewritten as a sum of n
functions of justone variable.

In this study, we compared the performance of PBIL and
EAG on the benchmark functions provided for CEC’2010
[16]. Their characteristics vary from separable to nonsep-
arable and unimodal to multimodal functions. Moreover,
all these functions are shifted, scalable, and minimization

problems, whose global minimum value is known, which is
0. These functions are provided in Table 1; for details, see [16].

3. Empirical Study

We used an empirical approach to compare the strength
of EAG and PBIL on large-scale global optimization prob-
lems. Three primary aims were pursued in this study: (a)
experimental setup upon which simulations are run, (b)
optimal parameter settings for EAG and PBIL (formative
experiment), and (c) statistical analysis to compare the
performance of EAG with PBIL on the selected test problems
(summative experiment). The performance of each algorithm
was analyzed in terms of solution quality and total elapsed
time. In what follows, we discuss the experimental setup, the
optimal parameter settings, and the analysis of results in turn.

3.1. Experimental Setup. An empirical investigation requires
a system upon which experiments are run. We implemented
the system in Matlab-R2009a. A brief description of this
implementation is outlined as follows.

(i) The solutions were encoded as binary strings. The
length of a string was set to 10 times the dimension
of the test problem (in this study, for the summative
experiment, the dimension of a problem was set to
1000 for each test function).

(ii) To keep uniformity, the probability vector was initial-
ized to 0.5 for both PBIL and EAG.

(iil) Initial population was sampled randomly for both
algorithms using the same initial probability vector;
the population size was kept 100 throughout the study.

(iv) Because fitness of an individual is computed from
its phenotype value, a function binry2real was imple-
mented which maps binary value (genotype) into the
corresponding decimal value (phenotype).

(v) In each generation, best and average fitness of the
population were recorded; for each algorithm the
total time that elapsed was also recorded.
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TABLE 1: Properties of the benchmark functions CEC’2010 [16].

Function Modality Separability Domain
F,: shifted elliptic function Unimodal Separable [-100, 100]"
F,: shifted Rastrigin’s function Multimodal Separable [-5,5]"
F;: shifted Ackley’s function Multimodal Separable [-32,32]°
F,: single-group shifted and m-rotated elliptic function Unimodal Single-group m-nonseparable [-100, 100]"
F;: single-group shifted and m-rotated Rastrigin’s function Multimodal Single-group m-nonseparable [-5,5]"
Fy: single-group shifted and m-rotated Ackley’s function Multimodal Single-group m-nonseparable [-32,32]°
F: single-group shifted and m-rotated Schwefel’s problem 1.2 Unimodal Single-group m-nonseparable [-100,100]"
Fy: single-group shifted and m-rotated Rosenbrock’s function Multimodal Single-group m-nonseparable [-100,100]"
F,: (D/2m)-group shifted and m-rotated elliptic function Unimodal (D/2m)-group m-nonseparable [-100, 100]P
Fyy: (D/2m)-group shifted and m-rotated Rastrigin’s function Multimodal (D/2m)-group m-nonseparable [-5,5]°
F,,: (D/2m)-group shifted and m-rotated Ackley’s function Multimodal (D/2m)-group m-nonseparable [-32,32]"
F\,: (D/2m)-group shifted and m-rotated Schwefel’s problem 1.2 Unimodal (D/2m)-group m-nonseparable [-100, 100]"
F\5: (D/2m)-group shifted and m-rotated Rosenbrock’s function Multimodal (D/2m)-group m-nonseparable [-100, 100]°
F\,: (D/m)-group shifted and m-rotated elliptic function Unimodal (D/m)-group m-nonseparable [-100, 100]°
F,5: (D/m)-group shifted and m-rotated Rastrigin’s function Multimodal (D/m)-group m-nonseparable [-5,5]P
F\¢: (D/m)-group shifted and m-rotated Ackley’s function Multimodal (D/m)-group m-nonseparable [-32,32]P
F\;: (D/m)-group shifted and m-rotated Schwefel’s problem 1.2 Unimodal (D/m)-group m-nonseparable [-100,100]"
Fyg: (D/m)-group shifted and m-rotated RosenbrocK’s function Multimodal (D/m)-group m-nonseparable [-100, 100]°
Fq: shifted Schwefel’s problem 1.2 Unimodal Fully nonseparable [-100, 100]"
FE,,: shifted RosenbrocKk’s function Unimodal Fully nonseparable [-100, 100]"

Both algorithms terminated when the maximum number
of generations exceeded a preset limit, which was set to
10000 generations for the formative experiment and 3.0e + 06
generations for the summative experiment.

3.2. Formative Experiment. Before running the experiment
properly, we conducted a pilot study to find the optimal
parameter values for EAG and PBIL. Since parameter tuning
in an evolutionary algorithms-based system is a challenging
task, a principled approach is required for this purpose. In
this study, we were interested in tuning three parameters
for EAG, learning rate (M), guided-mutation rate (f3), and
population size (N), and four parameters for PBIL, learning
rate («), mutation rate (u), mutation shift (§), and population
size (N). We used the following numerical optimization
functions to find the optimal parameter values for each
algorithm; for details, see [30]. (We encoded these functions
as 300-bit strings, 10 consecutive bits for each dimension.)

(i) Sphere Function. This is a smooth, unimodal function.
It is separable and relatively easy to optimize.

(ii) Rosenbrock’s Function. This is a complex optimization
function, which follows a parabolic trajectory.

(iil) Rastrigin’s Function. This function has many local
minima, but only one global minimum.

(iv) Griewank’s Function. This is a multimodal function
with an exponentially increasing number of local
minima as its dimension increases.

(v) Ackley’s Function. This is a multimodal function. It is
nonseparable and difficult to optimize.

EAG
for N from 10 to 100 Step 10
for A from 0.1 to 1.0 Step 0.1
for 3 from 0.1 to 1.0 Step 0.1
Record solution-fitness value
end_for
end_for
end_for
PBIL
for N from 10 to 100 Step 10
for « from 0.1 to 1.0 Step 0.1
for y from 0.01 to 0.1 Step 0.01
for § from 0.01 to 0.1 Step 0.01
Record solution-fitness value
end_for
end_for
end_for
end_for

ALGORITHM l: Parameter tuning mechanism for EAG and PBIL.

To find the optimal values for the selected sensitive
parameters, we changed them in an orderly manner and
recorded the fitness value as shown in Algorithm 1.

We ran both algorithms on each test problem in turn for
a maximum of 10000 generations; 10 independent runs were
performed to stabilize the parameter settings. With regard
to EAG, we observed that a smaller value of A (mostly 0.1),
a larger value of 8 (mostly 0.9), and a larger value of N
(mostly N > 50) provided better results. We further fine-
tuned the parameter f3; keeping N = 100 and A = 0.1,
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it was observed that 8 = 0.95 gave much better result; on
this combination of parameter values, EAG was able to find
the global optimal value for each test function. Similarly,
for PBIL, it was observed that a combination of parameter
values (u = 0.02, 6 = 0.05, « = 0.1, and N = 100), the
same as reported in [14], gave better results. Therefore, in the
summative experiment, we used N = 100, A = 0.1, and
B = 0.95 as parameter values for EAG (throughout this study,
for EAG, we used mutation rate = 0.02, mutation shift = 0.05,
and negative learning rate = 0.075 [8]). Also, for PBIL, the
following combination of parameter values was used: & = 0.1,
¢ =0.02,8 =0.05,and N = 100.

3.3. Summative Experiment. The performance of an evolu-
tionary algorithm can be manifested in different ways. We are
interested in two performance gains: (a) quality improvement
and (b) speed improvement. However, we mainly focused
on the former. This is important, because even though
most evolutionary algorithms use sophisticated strategies to
find good solutions, finding an acceptably “good-enough”
solution is not guaranteed. So, if the solution quality is not
“good-enough” then the secondary aspects such as speed
are of little consequence. We define that an algorithm A
beats an algorithm B under quality criterion if algorithm A
attains a converged solution of higher fitness than algorithm
B. Similarly, an algorithm A beats an algorithm B under
speed criterion if algorithm A attains a solution of a given
quality/fitness in lesser time than algorithm B. It is possible,
however, that a gain in quality may be obtained at the expense
of time and vice versa. Therefore, in order to prove that the
overall performance of an algorithm A is better than B, we
must show one of the following propositions to be true.

P1: algorithm A performs better than algorithm B in both
speed and quality.

P2: algorithm A performs better in terms of speed with-
out being outperformed in quality.

P3: algorithm A performs better in terms of quality
without being outperformed in speed.

To test these propositions, a series of experiments were
run on a Matlab-R2009a system, Sony Vaio Core i5-2430M,
with 2.4 GHz speed and 4 GB RAM (DDR3). We recorded
(a) the fitness of a solution for each generation, (b) the best
fitness by the end of a run, (c) the best fitness at various points
(5e + 05, le + 06, 1.5e + 06, 2e + 06, and 2.5e + 06) during the
evolution process, and (d) the total time that elapsed.

3.4. Results and Discussion. In this section, we present the
simulation results of PBIL and EAG on each test problem.
To test whether the apparent differences in the performance
gain are statistically significant, we also report on a two-tailed
pairwise ¢-test.

We measured the quality of a solution x in terms of
function error value defined as f(x) — f(x"), where x* is
the known global optimum of f [31]. Table 2 shows the
simulation results of the two algorithms on each test problem
in 25 independent runs, including the overall best solution

(Best), the mean of best-of-run solution averaged over 25
runs (Mean), the standard deviation in best-of-run solution
(0), and the P value for a two-tailed t-test (the P value
measures whether or not the pairwise difference in the
best solution for each algorithm in 25 independent runs is
statistically significant; moreover, in this study, P < 0.05 is
our standard value for statistical significance).

It is clear from Table 2 that both algorithms failed to
find the known global optimum value for any function.
However, the performance of EAG looks better than PBIL
on all functions. It is interesting to note that on separable
functions, namely, F,, F,, and F;, both algorithms offered
competitive performance. In the remaining 17 functions,
F,-F,, the performance of EAG was far better than PBIL.

Figure 1 depicts the evolutions of solutions for some select
functions. It is clear from the figures that EAG performed
better than PBIL during the search process. It was observed
that, for functions F,-F,, the average solution quality of EAG
at various points (5e+05, 1e+06, 1.5e+06, 2e+06, and 2.5e+06)
was greatly improved over PBIL.

We also compared the performance of EAG and PBIL
with MA-SW-Chains [17], the winner of CEC’2010 [16]. It is
evident from Table 2 that MA-SW-Chains performed better
than EAG and PBIL. However, interestingly, we found that,
for two separable functions (F, and F,) and seven partially
nonseparable functions (F,—F, and F,;), the best results of
EAG are better than the best mean results of MA-SW-Chains
(cf. Table 2, the results in bold).

A one-way ANOVA was used to test whether the apparent
differences in the best solutions among the competing algo-
rithms are significant or not. Results are shown in Table 3.
Results differed significantly across the three algorithms on
20 select functions: F(2,57) = 7.46, F-critical = 2.83,
P < 0.5. To further analyze the performance of EAG and
PBIL, we report pairwise comparisons using a ¢-test. Pairwise
comparisons revealed that EAG outperformed PBIL on 17
functions (F,—F,): P < 0.01. On the remaining three
functions (F,-F;), the difference between EAG and PBIL was
not significant though: P > 0.5.

To test our second performance criterion (speed gain), we
recorded time (in milliseconds) taken by each algorithm to
finish the search process. As discussed earlier, both PBIL and
EAG terminated after a fixed number of generations, which
were set to 3.0e + 6. Again, all the simulation results were
averaged over 25 independent runs. The results are shown
in Table 4, which indicate that PBIL converged more quickly
than EAG on all functions. Again, a one-way ANOVA test
revealed that the speed differences between EAG and PBIL
are statistically significant: F(1,38) = 5.93, F-critical = 2.09,
P < 0.5 (Table 5). Pairwise comparisons further revealed
that the convergence time of PBIL was significantly faster
(P < 0.01) than EAG on all functions. These results suggest
that EAG is computationally more expensive than PBIL.

None of our propositions (P1, P2, and P3) was found
true, because EAG performed better than PBIL in terms
of solution quality, but the latter outperformed the former
in terms of speed. But as mentioned earlier, in this study,
solution quality was our primary objective; therefore we can
conclude that EAG offered better performance than PBIL. To
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TABLE 2: The solution quality of PBIL and EAG on CEC’2010 benchmark functions.
PBIL EAG MA-SW-Chains
Mean (o) Best Mean (o) Best” Mean (o) Best
F, é:ggz - gf) 3.58¢ — 02 é:g‘;g - gf) 3.47¢ - 02 (iggz - ii) 3.18¢ - 15
k 5332 : 82) 917e+02 (?:?63: : 822) 793¢ + 02 (;gsee:ogl) 70%e+02
F, égz : gg) 1.97¢ + 00 é?gj : 88) 1.25¢ + 00 (3723512 - 112) ) 3.34¢ - 13
F, (gjigi : E) 8.24e +11 éf;::& 3.49¢+11 (;1523::113) 3.04e + 11
E éﬁii N 3§> 503¢ +09 353: . 878) 4.02¢ +07 égii : gg) 289+ 07
F, (;.?)gi : gi) 473¢ + 05 é_g;f : 8;1) 1.05¢ + 04 (;'éii : ?)i) 8.13¢ — 07
F, é;;i : 8:) 119 + 04 (igiee:((ﬁ) 4.17¢+ 01 (é%ee:%zl) 3.35¢ — 03
F, (z:gz : 878) 1.48¢ + 08 (;1.'322 : 8;) 431e + 06 ( 31:;%:%77) 1.54¢ + 06
F, (zf‘éz N 8;) 4.32¢ +07 ééi: N 8;) 1.03¢ + 07 (if;z ! 82) 1.19¢ + 07
Fy é:ggi: (0);) 5.87¢ + 03 (f.‘gif : gg) 2.47¢ + 03 (iﬂj : g;) 1.81e + 03
Fu (3322 N gf) 6-28¢ +02 (999755 : 8(1» 752 + 01 (;38;): N (?3) 274e+ 01
F, (ﬁ;‘fe : (())11) 7.29¢ + 01 é:g?j I 88) 7.92e + 00 é:g;i - gg) 2.65¢ — 06
F, (i'égee ' (()é) 1.26¢ + 04 éfg:: 833) 4.07¢ + 02 152;2:0(5 3.86¢ + 02
Fus (fzgjee ; ég) 583¢+09 5335 : 8;) 759 +07 (1391:}; : gé) 279 +07
Fis (;79?: 8?) 768¢ +03 (Zf;fez i 8;) 346e+03 (igj : 83) 2:36e+03
Fy 5.‘2‘295 : 823) 6.22¢ + 02 (?;:?);i : (()ﬁ) 1.02¢ + 02 (i'zgs : g}) 8.51e + 01
F, (iﬁ:: 8;’) 2.07¢ + 03 é_'ggj N 811) 1.69¢ + 01 (11%‘;‘2 * %‘1)) 1.04¢ + 00
Fis &?Ei i (o)g) 1.87¢ +06 (;?)f;ee | %i) 758e+03 é?féii (());) 783¢+ 02
Fg éiif N 82) 4.93¢+07 (fgi : 82) 8.37¢+05 5355 : 82) 249e 405
Fyy (?.'37;15 : g:) 6.04e + 04 é:gﬁ: (());L) 3.99 + 03 (?%Z : (O)i’) 9.25¢ + 02
*The boldface values indicate that the best results of EAG are better than the best mean results of MA-SW-Chains.
TABLE 3: One-way ANOVA test results (solution quality).
Source of variation SS df MS P value F-crit.
Between groups 8.68E + 19 2 4.34E + 19 7.46 0.34 2.83
Within groups 8.48E + 21 57 1.49E + 20
Total 8.56E + 23 59

this endeavor, we also explored another dimension of speed
gain, the first ever generation in which the best solution was
found. Interestingly, it was observed that overall EAG found
the best solution earlier than PBIL; these results are also
apparent in Figure 1.

4. General Discussion

The study presented here revealed two primary results. First,
EAG outperformed PBIL in attaining a good-quality solution.
This indicates that, in sampling offspring, a combination of



Applied Computational Intelligence and Soft Computing

flx) - f(x™)

Error

16000
14000

12000
10000
8000
6000
4000
2000

0 . . :

0.5 1 1.5

Error = f(x) - f(x¥)

Error = f(x) - f(x")
S = N W R 1NN o

Error = f(x) - f(x*)

18000
16000
14000
12000
10000
8000
6000
4000
2000

131

flo) — f(x")

Error

0

0 0.5 1 1.5 2 2.5 3
Generations x10°

F;

Error = f(x) - f(x")

0 2 2.5 3

Generations x10°

x10° Fs

10

o

0

X
4

3.5
3
2.5
2
1.5
1
0.5
0

flo) — f(x")

Error

:

1 1.5 2 2.5 3
Generations x10°

10* F,

Error = f(x) - f(x")
O = N W R U1 NN e

0.5 1 1.5 2 2.5 3
Generations x10°

(=}

—— PBIL — EAG

x10* F,

0 0.5 1 1.5 2 2.5 3
Generations x10°

11
x10 F,

0 0.5 1 1.5 2 2.5 3
Generations x10°

x10° Fe
2

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

0 0.5 1 1.5 2 2.5 3
Generations x10°

x108 Fy

—
(==}

el

1 1.5 2 2.5 3

Generations x10

—— PBIL — EAG

F1GURE 1: Continued.



x107 F,

—
S

o

Error = f(x) - f(x")
—— N W R U1 NN o

0 0.5 1 1.5 2 2.5 3

Generations x10°

Fll
18000

16000
14000
12000
10000
8000
6000
4000
2000

Error = f(x) - f(x")

0 0.5 1 1.5 2 2.5
Generations x10

4
x10 Fis

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Error = f(x) - f(x¥)

0 0.5 1 1.5 2 2.5 3

Generations x10°

— PBIL — EAG

Applied Computational Intelligence and Soft Computing

x10% Fyp

1.8
1.6
1.4
1.2

flx) = f(x")

0.8
0.6
0.4
0.2

Error

0 0.5 1 1.5 2 2.5 3

Generations x10°

x10* F3
14

12

10

Error = f(x) - f(x¥)

0 0.5 1 1.5 2 2.5 3

Generations x10

2f;04 Fyy

1.8
1.6
1.4
1.2

flx) = f(x")

Ju—

0.8
0.6
0.4
0.2

Error

0 0.5 1 1.5 2 2.5 3
Generations x10

— PBIL — EAG
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global statistical information and the location information
of the solutions found so far is better than using global
statistical information only. We observed that, on separable
functions, both algorithms offered competitive performance
but on nonseparable functions EAG outperformed PBIL.
This suggests that the underlying assumption in EDAs that
problem variables are independent may prevent efficient
convergence to the global optimum when problem variables
interact strongly.

Second, PBIL was found faster than EAG. This suggests
that EAG is computationally expensive. The reason behind
this expensiveness is that the guided-mutation operator used

in EAG involves many computations in sampling offspring.
We also observed that the speed of EAG becomes further slow
with the increase in chromosome length.

If both solution quality and computational time are
addressed, this raises the question of how these two dimen-
sions should be traded off against each other. If the output
of one algorithm was better than that of another but was
found more slowly, which of the two algorithms should be
preferred? Perhaps solution quality should be given more
weight as compared to speed.

Finally, the rather high difference between the known
global optimum solution and the solution found by PBIL and
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TaBLE 4: Computational time of PBIL and EAG on CEC’2010 benchmark functions.
PBIL EAG P value
Time (ms) o Time (ms) o
F, 3.21e + 07 2.42e + 01 4.96¢e + 07 1.37e + 01 <0.01
F, 3.51le + 08 3.17e + 01 4.13e + 08 9.16e + 01 <0.01
F; 5.27e + 07 6.73e + 01 5.71e + 07 7.73e + 01 <0.01
E, 2.05e +10 3.12e + 02 2.82e +10 2.39¢ + 02 <0.01
F; 3.87e + 08 1.01e + 02 4.12e + 08 1.17e + 02 <0.01
Fy 6.13¢ + 08 5.72e + 01 8.07e + 08 7.26¢e + 01 <0.01
F, 8.58¢ + 08 6.36e + 01 9.93¢ + 08 9.17e + 01 <0.01
Fg 1.26e + 09 719¢ + 01 3.86e + 09 8.44e + 01 <0.01
F, 3.91e + 07 2.49e + 01 6.52e +7 4.79e + 01 <0.01
F, 1.63e + 07 3.27e+ 01 3.74e + 07 6.31e + 01 <0.01
F, 718e + 06 2.19¢ + 01 9.07e + 06 2.75e + 01 <0.01
F, 4.99¢ + 08 5.06e + 01 8.18e + 08 6.53e + 01 <0.01
F; 5.77e + 08 4.96¢ + 01 7.84e + 08 719¢ + 01 <0.01
F,, 7.28e + 08 3.97e+ 01 9.27e + 08 5.02e + 01 <0.01
Fis 2.37e + 07 1.73e + 01 3.26e + 07 2.08e + 01 <0.01
Fis 8.46¢ + 06 3.26e + 01 9.38¢ + 06 3.91le + 01 <0.01
F, 3.52e + 08 4.05e + 01 5.27e + 08 4.69¢ + 01 <0.01
Fq 4.21e + 09 6.71e + 01 4.73e + 09 9.37e + 01 <0.01
F, 3.94e + 08 5.28¢e + 01 7.51e + 08 718e + 01 <0.01
F,, 5.69¢ + 07 3.16e + 01 713e + 07 4.29¢ + 01 <0.01
Note. It is important to mention here that we do not include time for MA-SW-Chains, because the authors did not report on computational time.
TABLE 5: One-way ANOVA test results (computational cost).

Source of variation SS df MS F P value F-crit.
Between groups 3.96E + 18 1 3.96E + 18 5.93 <0.01 2.09
Within groups LI4E + 21 38 2.99E +19
Total 1.14E + 21 39

EAG could be because of our suboptimal encoding scheme.
We encoded the solutions (genotype) as bitstrings, but fitness
of these solutions was computed from their phenotype
values. Therefore, binary (genotype) to decimal (phenotype)
conversion was necessary, and this conversion could have
resulted in sufficient accuracy loss. It was also observed that
this conversion takes a significant amount of time and as a
whole degrades the performance of an algorithm in terms of
speed as well.

5. Conclusion

This paper has described a comparative study of EAG and
PBIL on large-scale global optimization problems. In a nut-
shell, we found that combining global statistical information
and the location information of the solutions found so
far significantly improves the quality of search/optimization
process. We observed that, on separable functions, both
algorithms offered competitive performance but on nonsep-
arable functions EAG outperformed PBIL. These findings
suggest that the location information should be used and it
is not sufficient to use a very limited number of dependence
relationships (i.e., the EDAs approach) to solve optimization

and search problems. We also observed that EAG achieved
better solution quality at the expense of more computational
cost. We conclude that the computational overheads should
not penalize EAG, because if the solution quality is not good-
enough (e.g., in a fault-critical situation) then the secondary
aspects such as speed are of little consequence.

The results show that, originally developed for discrete
optimization problems, EAG is also suitable for continuous
optimization problems. We found that the solution quality
of EAG is comparable to MA-SW-Chains, the winner of
CEC’2010.
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