12 research outputs found

    Self-adaptive moving mesh schemes for short pulse type equations and their Lax pairs

    Get PDF
    Integrable self-adaptive moving mesh schemes for short pulse type equations (the short pulse equation, the coupled short pulse equation, and the complex short pulse equation) are investigated. Two systematic methods, one is based on bilinear equations and another is based on Lax pairs, are shown. Self-adaptive moving mesh schemes consist of two semi-discrete equations in which the time is continuous and the space is discrete. In self-adaptive moving mesh schemes, one of two equations is an evolution equation of mesh intervals which is deeply related to a discrete analogue of a reciprocal (hodograph) transformation. An evolution equations of mesh intervals is a discrete analogue of a conservation law of an original equation, and a set of mesh intervals corresponds to a conserved density which play an important role in generation of adaptive moving mesh. Lax pairs of self-adaptive moving mesh schemes for short pulse type equations are obtained by discretization of Lax pairs of short pulse type equations, thus the existence of Lax pairs guarantees the integrability of self-adaptive moving mesh schemes for short pulse type equations. It is also shown that self-adaptive moving mesh schemes for short pulse type equations provide good numerical results by using standard time-marching methods such as the improved Euler's method.Comment: 13 pages, 6 figures, To be appeared in Journal of Math-for-Industr

    On the tau-functions of the Degasperis-Procesi equation

    Full text link
    The DP equation is investigated from the point of view of determinant-pfaffian identities. The reciprocal link between the Degasperis-Procesi (DP) equation and the pseudo 3-reduction of the CโˆžC_{\infty} two-dimensional Toda system is used to construct the N-soliton solution of the DP equation. The N-soliton solution of the DP equation is presented in the form of pfaffian through a hodograph (reciprocal) transformation. The bilinear equations, the identities between determinants and pfaffians, and the ฯ„\tau-functions of the DP equation are obtained from the pseudo 3-reduction of the CโˆžC_{\infty} two-dimensional Toda system.Comment: 27 pages, 4 figures, Journal of Physics A: Mathematical and Theoretical, to be publishe
    corecore