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Self-adaptive moving mesh schemes for short
pulse type equations and their Lax pairs
Bao-Feng Feng1, Kenichi Maruno1,2* and Yasuhiro Ohta3

Abstract

Integrable self-adaptive moving mesh schemes for short pulse type equations (the short pulse equation, the coupled
short pulse equation, and the complex short pulse equation) are investigated. Two systematic methods, one is based
on bilinear equations and another is based on Lax pairs, are shown. Self-adaptive moving mesh schemes consist of
two semi-discrete equations in which the time is continuous and the space is discrete. In self-adaptive moving mesh
schemes, one of two equations is an evolution equation of mesh intervals which is deeply related to a discrete
analogue of a reciprocal (hodograph) transformation. An evolution equations of mesh intervals is a discrete analogue
of a conservation law of an original equation, and a set of mesh intervals corresponds to a conserved density which
play an important role in generation of adaptive moving mesh. Lax pairs of self-adaptive moving mesh schemes for
short pulse type equations are obtained by discretization of Lax pairs of short pulse type equations, thus the existence
of Lax pairs guarantees the integrability of self-adaptive moving mesh schemes for short pulse type equations. It is
also shown that self-adaptive moving mesh schemes for short pulse type equations provide good numerical results
by using standard time-marching methods such as the improved Euler’s method.
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1 Introduction
The studies of discrete integrable systems were initi-
ated in the middle of 1970s. Hirota discretized various
soliton equations such as the KdV, the mKdV, and the
sine-Gordon equations based on the bilinear equations
[16-20], Ablowitz and Ladik proposed a method of inte-
grable discretizations of soliton equations, including the
nonlinear Schrödinger equation and the modified KdV
(mKdV) equation, based on the Ablowitz-Kaup-Newell-
Segur (AKNS) form [1-5]. Following the pioneering works
of Hirota and Ablowitz-Ladik, the studies of discrete inte-
grable systems have been expanded in diverse areas (see,
for example, [6,7,15,40]).
It is known that there is a class of soliton equations

which are derived from the Wadati-Konno-Ichikawa
(WKI) type 2×2 linear system [5,27,43]. Soliton equations
in the WKI class are transformed to certain soliton
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equations which are derived from the AKNS type 2 × 2
linear system through reciprocal (hodograph) transforma-
tions [5,22,23,36,44].
Integrable discretization of soliton equations in the

WKI class had been regarded as a difficult problem until
recently. A systematic treatment of reciprocal (hodo-
graph) transformations in integrable discretizations had
been unknown for three decades. Recently, the present
authors proposed integrable discretizations of some
soliton equations in the WKI class by using the bilin-
ear method, and it was confirmed that those integrable
discrete equations work effectively on numerical compu-
tations of the above class of soliton equations as self-
adaptive moving mesh schemes [11-14,34,35]. However,
the method employed in our previous papers was rather
technical, thus it is not easy to extract a fundamen-
tal structure of discretizations to apply this method to
a broader class of nonlinear wave equations including
nonintegrable systems.
The aim of this article is to present two systematic

methods (in sophisticated forms), one is based on bilin-
ear equations (this method is regarded as an extension
of Hirota’s discretization method) and another is based
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on Lax pairs (this method is regarded as an extension
of Ablowitz-Ladik’s discretization method), to construct
self-adaptive moving mesh schemes for soliton equations
in the WKI class. We demonstrate how to construct
self-adaptive moving mesh schemes for short pulse type
equations whose Lax pairs are written in the WKI type
form which is transformed into the Ablowitz-Kaup-
Newell-Segur (AKNS) type form by reciprocal (hodo-
graph) transformations. We clarify that moving mesh
is generated by following discrete conservation law and
mesh intervals are nothing but discrete conserved densi-
ties which is a key of self-adaptive moving mesh schemes.
Lax pairs of self-adaptive moving mesh schemes for short
pulse type equations are constructed by discretization of
Lax pairs of short pulse type equations. It is also shown
that self-adaptive moving mesh schemes for short pulse
type equations provide good numerical results by using
standard time-marching methods such as the improved
Euler’s method.
The short pulse (SP) equation [8,32,33,37-39]

uxt = u + 1
6
(u3)xx , (1)

is linked with the so-called coupled dispersionless (CD)
system [21,26,28,29]

∂ρ

∂T
− ∂

∂X

(
−u2

2

)
= 0 , (2)

∂2u
∂X∂T

= ρu , (3)

through the reciprocal transformation (this is often called
the hodograph transformation in many literatures)

x = X0 +
∫ X

X0
ρ(X̃,T)dX̃ , t = T , (4)

where X0 is a constant. The reciprocal (hodograph) trans-
formation (4) yields

∂

∂X
= ρ

∂

∂x
, (5)

∂

∂T
= ∂

∂t
− u2

2
∂

∂x
. (6)

Note that the reciprocal (hodograph) transformation (4)
originates from the conservation law (2). Applying the
reciprocal (hodograph) transformation (4) to (3) yields

∂

∂x

(
∂

∂t
− u2

2
∂

∂x

)
u = u . (7)

This can be rewritten as eq. (1). Thus the SP equation
is equivalent to the CD system with the reciprocal (hodo-
graph) transformation. As we mentioned in our pre-
vious paper, the reciprocal (hodograph) transformation
between the CD system and the SP equation is nothing but

the transformation between the Lagrangian coordinate
and the Eulerian coordinate [11].
The CD system (2) and (3) can be derived from the com-

patibility condition of the following linear 2 × 2 system
(Lax pair) [28]:

∂�

∂X
= U� ,

∂�

∂T
= V� , (8)

where

U = −iλ
(

ρ uX
uX −ρ

)
, V =

( i
4λ −u

2u
2 − i

4λ

)
, (9)

and � is a two-component vector. By applying the recip-
rocal (hodograph) transformation (4) into the above linear
2 × 2 system (Lax pair) (8) and (9), we obtain the linear
2 × 2 system (Lax pair) for the short pulse equation [38]:

∂�

∂x
= Ũ� ,

∂�

∂t
= Ṽ� , (10)

where

Ũ = −iλ
(

1 ux
ux −1

)
, (11)

Ṽ =
( i

4λ − iλ
2 u

2 −u
2 − iλ

2 u
2ux

u
2 − iλ

2 u
2ux − i

4λ + iλ
2 u

2

)
, (12)

which can be rewritten as

Ũ = λ

(
1 ux
ux −1

)
, (13)

Ṽ =
( 1

4λ + λ
2u

2 −u
2 + λ

2u
2ux

u
2 + λ

2u
2ux − 1

4λ − λ
2u

2

)
, (14)

by replacing λ by iλ. This is nothing but the Lax pair of
the SP equation. Note that the Lax pair of the SP equation
is of the WKI type [38]. In general, soliton equations
derived from WKI-type eigenvalue problems are trans-
formed into soliton equations derived from AKNS-type
eigenvalue problems by reciprocal (hodograph) transfor-
mations [22,23,36,44].

2 A self-adaptivemovingmesh scheme for the SP
equation and its Lax pair

The SP equation (1) can be discretized by means of the
following two methods:

Method 1: The discretization method using bilinear
equations

• Step 1: Transform the SP equation (1) into the CD
system (2) and (3) by the reciprocal (hodograph)
transformation (4).

• Step 2: Transform the CD system into the bilinear
equations.

• Step 3: Discretize the bilinear equations of the CD
system.

• Step 4: Transform the (semi-)discrete bilinear
equations into the (semi-)discrete CD system.
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• Step 5: Discretize the reciprocal (hodograph)
transformation and transform the (semi-)discrete CD
system via the discrete reciprocal (hodograph)
transformation.

Method 2: The discretization method using a Lax pair

• Step 1: Transform the Lax pair of the SP equation (1)
by the reciprocal (hodograph) transformation (4).
The Lax pair obtained by the reciprocal (hodograph)
transformation is the one of the CD system (2)
and (3).

• Step 2: Discretize the Lax pair of the CD system. The
compatibility condition of the discretized Lax pair
yields the (semi-)discrete CD system.

• Step 3: Discretize the reciprocal (hodograph)
transformation and transform the discretized Lax
pair of the (semi-)discrete CD system via the discrete
reciprocal (hodograph) transformation.

• Step 4: The compatibility condition of the discretized
Lax pair obtained in Step 3 yields the (semi-)discrete
SP equation.

Since the SP equation (1) is equivalent to the CD system
(2) and (3) with the reciprocal (hodograph) transforma-
tion (4), the semi-discrete CD system with the discrete
reciprocal (hodograph) transformation is equivalent to
the semi-discrete SP equation.
Here we show the details of procedures to construct the

self-adaptive moving mesh scheme for the SP equation by
means of the above two methods.

Method 1:

Step 1: The SP equation (1) is transformed into the CD
system (2) and (3) via the reciprocal (hodograph)
transformation (4).

Step 2: The CD system (2) and (3) can be transformed
into the bilinear equations

D2
T f · f = 1

2
g2 , (15)

DXDTf · g = fg , (16)

via the dependent variable transformation

u = g
f
, ρ = 1 − 2(ln f )XT . (17)

Here DX and DT are Hirota’s D-operators defined
as

Dm
X f · g = (∂X − ∂X′)mf (X)g(X′)|X′=X .

Step 3: Discretize the space variable X in the bilinear
equations (15) and (16).

D2
T fk · fk = 1

2
g2k , (18)

1
a
DT

(
fk+1 · gk − fk · gk+1

)
= 1

2
(
fk+1gk + fkgk+1

)
.

(19)

Step 4: Consider the dependent variable transformation

uk = gk
fk

, ρk = 1 − 2
a

(
ln

fk+1
fk

)
T
, (20)

which is a discrete analogue of (17). Then the
bilinear equations (18) and (19) are transformed
into

∂Tρk −

(
−u2k+1

2

)
−

(
−u2k

2

)
a

= 0 , (21)

∂T

(
uk+1 − uk

a

)
= ρk

uk+1 + uk
2

, (22)

which is a semi-discrete analogue of the CD
system.

Step 5: Consider a discrete analogue of the reciprocal
(hodograph) transformation

xk = X0 +
k−1∑
j=0

aρj , (23)

where x0 = X0. Now we introduce the mesh
interval

δk = xk+1 − xk . (24)

Note that the mesh interval satisfies the relation

δk = aρk , (25)

so we can rewrite equations (21) and (22) with the
discrete reciprocal (hodograph) transformation
(23) into the self-adaptive moving mesh scheme
for the SP equation

∂Tδk = −u2k+1 + u2k
2

, (26)

∂T (uk+1 − uk) = δk
uk+1 + uk

2
, (27)

where δk is related to xk by δk = xk+1 − xk which
originates from the discrete reciprocal
(hodograph) transformation

xk = X0 +
k−1∑
j=0

δj . (28)

The set of points {(xk ,uk)}k=0,1,··· provides a
solution of the semi-discrete SP equation. Note
that the above discrete reciprocal (hodograph)
transformation can be interpreted as the
transformation between Eulerian description and
Lagrangian description in a discretized space [11].
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The discrete reciprocal (hodograph)
transformation (28) yields

�

�Xk
= �

a
= �xk

a
�

�xk
= ρk

�

�xk
= ρk

�

δk
,

∂

∂T
= ∂

∂t
+ ∂xk

∂T
∂

∂xk
= ∂

∂t
+

k−1∑
j=0

∂δj

∂T
∂

∂xk

= ∂

∂t
+

⎛
⎝k−1∑

j=0

−u2j+1 + u2j
2

⎞
⎠ ∂

∂xk

= ∂

∂t
+

(−u2k+1 + u20
2

)
∂

∂xk
(29)

= ∂

∂t
+

(−u2k+1
2

)
∂

∂xk
, if u0 = 0 ,

(30)

where � is a difference operator defined as
�fk ≡ fk+1 − fk . Applying this to eq. (27), we
obtain

1
δk

∂(uk+1 − uk)
∂t

− u2k+1
2

1
δk

∂(uk+1 − uk)
∂xk

= uk+1 + uk
2

. (31)

In the continuous limit δk → 0, this leads to the
SP equation (1).
We remark that eq. (21) describes the evolution of
the mesh interval δk , and this equation is nothing
but a discrete analogue of the conservation law
(2). This means that the mesh interval δk is a
conserved density of the self-adaptive moving
mesh scheme. Thus the mesh interval δk is
determined by the semi-discrete conservation law.
From the semi-discrete conservation law, one can
find the following property: If −u2k+1+u2k

2 < 0, i.e.,
the slope between u2k and u2k+1 is positive, then
the mesh interval δk becomes smaller. If
−u2k+1+u2k

2 > 0, i.e., the slope between u2k and u2k+1
is negative, then the mesh interval δk becomes
larger. Thus this scheme creates refined mesh grid
for given data {xk ,uk} for k = 0, 1, 2, · · · ,N , i.e.,
mesh grid is refined in which slopes are steep.

Method 2:

Step 1: The Lax pair of the SP equation is given by (10)
with (13) and (14). This is transformed into (8)

with (9) via the reciprocal (hodograph)
transformation (4).

Step 2: By discretizing the Lax pair (8) with (9), we obtain
the following linear 2 × 2 system (Lax pair):

�k+1 = Uk�k ,
∂�k
∂T

= Vk�k , (32)

where

Uk =
(

1 − iλaρk −iλuk+1−uk
a

−iλuk+1−uk
a 1 + iλaρk

)
, (33)

Vk =
( i

4λ −uk
2uk

2 − i
4λ

)
, (34)

where �k is a two-component vector. The
compatibility condition yields the semi-discrete
CD system (21) and (22).

Step 3: Consider a discrete analogue of the reciprocal
(hodograph) transformation (23). Now we
introduce the mesh interval δk = xk+1 − xk which
satisfies the relation δk = aρk , so one can rewrite
Uk and Vk by using lattice intervals δk and
replacing λ by iλ:

Uk =
(

1 + λδk λ
uk+1−uk

a
λ
uk+1−uk

a 1 − λδk

)
, (35)

Vk =
( 1

4λ −uk
2uk

2 − 1
4λ

)
. (36)

Step 4: This Lax pair provides (26) and (27) which is
nothing but the self-adaptive moving mesh
scheme for the SP equation.

Numerical simulations Here we show some examples
of numerical simulations using the self-adaptive moving
mesh scheme (26) and (27). As a time marching method,
we use the improved Euler’s method.
Multi-soliton solutions of the SP equation are given by

u = g
f
, ρ = 1 − 2(ln f )XT , (37)

x = X0 +
∫ X

X0
ρ(X̃,T)dX̃ , t = T (38)

f =
∣∣∣∣ AN IN
−IN BN

∣∣∣∣ = |IN + ANBN | (39)

g =
∣∣∣∣∣∣
AN IN e�

N
−IN BN 0�
0 −aN 0

∣∣∣∣∣∣ , (40)
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where

AN =

⎛
⎜⎜⎜⎜⎜⎝

eξ1+ξ1
4(1/p1+1/p1)

eξ1+ξ2
4(1/p1+1/p2) · · · eξ1+ξN

4(1/p1+1/pN )
eξ2+ξ1

4(1/p2+1/p1)
eξ2+ξ2

4(1/p2+1/p2) · · · eξ2+ξN
4(1/p2+1/pN )

...
...

. . .
...

eξN+ξ1
4(1/pN+1/p1)

eξN+ξ2
4(1/pN+1/p2) · · · eξN+ξN

4(1/pN+1/pN )

⎞
⎟⎟⎟⎟⎟⎠ ,

BN =

⎛
⎜⎜⎜⎜⎝

a1a1
1/p1+1/p1

a1a2
1/p1+1/p2 · · · a1aN

1/p1+1/pNa2a1
1/p2+1/p1

a2a2
1/p2+1/p2 · · · a2aN

1/p2+1/pN
...

...
. . .

...
aNa1

1/pN+1/p1
aNa2

1/pN+1/p2 · · · aNaN
1/pN+1/pN

⎞
⎟⎟⎟⎟⎠ ,

and IN is the N × N identity matrix, a� is the transpose
of a,

aN = (a1, a2, · · · , aN ) , eN = (
eξ1 , eξ2 , · · · , eξN )

,
0 = (0, 0, · · · , 0) ,

ξi = piX + 1
pi
T , 1 ≤ i ≤ N .

For example, the τ -functions f and g of the 2-soliton
solution are written as

f = 1 + a21p
2
1

16
e2ξ1 + a22p

2
2

16
e2ξ2 + a1a2p21p

2
2

2(p1 + p2)2
eξ1+ξ2

+ a21a
2
2p

2
1p

2
2

256

(
p1 − p2
p1 + p2

)4
e2ξ1+2ξ2 ,

(41)

g = a1eξ1 + a2eξ2 + a1a22p
2
2

16

(
p1 − p2
p1 + p2

)2
eξ1+2ξ2

+ a21a2p
2
1

16

(
p1 − p2
p1 + p2

)2
e2ξ1+ξ2 ,

(42)

where

ξi = piX + 1
pi
T , i = 1, 2 .

There are two types of 2-loop soliton solutions and a
type of breather solutions:

(1) Interactions of two loop solitons if both a1 and a2 are
positive, or if both a1 and a2 are negative. The wave
numbers p1 and p2 are chosen real.

(2) Interactions of a loop soliton and an anti-loop soliton
if a1 and a2 have opposite signs. The wave numbers
p1 and p2 are chosen real.

(3) Breather solutions if the wave numbers p1 and p2 are
chosen complex and satisfy p2 = p∗

1 and a2 = a∗
1 in

the above τ -functions.

Here we show three examples of numerical simulations
of the SP equation.We use the number ofmesh grid points
N = 200, the width of the computational domain D = 80,
and the time interval dt = 0.0001. Figure 1 shows the

numerical simulation of the 2-loop soliton solution of the
SP equation. Figure 2 shows the numerical simulation of
the solution describing the interaction of a loop soliton
and anti-loop soliton of the SP equation. In Figure 3, we
show the numerical simulation of the breather solution
of the SP equation. In these three examples, numerical
results have good agreement with exact solutions of the
SP equation. It is possible to have more accurate numeri-
cal results if we increase the number of mesh grid points
and use smaller time steps.

3 Self-adaptivemovingmesh schemes for the
coupled short pulse equation and the complex
short pulse equation

By means of the above methods (Method 1 or Method 2)
for constructing self-adaptive moving mesh schemes, we
can also construct self-adaptive moving mesh schemes
for the coupld SP equation and the complex SP equation.
Here we show only the results obtained by usingMethod 1
and Method 2. Note that both methods give the same
results.
Consider the following linear 2 × 2 system:

∂�

∂X
= U� ,

∂�

∂T
= V� , (43)

where

U = −iλ
(

ρ uX
vX −ρ

)
, V =

( i
4λ −u

2v
2 − i

4λ

)
, (44)

where � is a two-component vector. The compatibility
condition yields the coupled CD system [24,25]

∂ρ

∂T
− ∂

∂X

(
−uv

2

)
= 0 , (45)

∂2u
∂X∂T

= ρu , (46)

∂2v
∂X∂T

= ρv . (47)

Note the coupled CD system (45), (46) and (47) can be
transformed into the bilinear equations

D2
T f · f = 1

2
gh , (48)

DXDTf · g = fg , (49)
DXDTf · h = fh , (50)

via the dependent variable transformation

u = g
f
, v = h

f
, ρ = 1 − 2(ln f )XT . (51)

Applying the reciprocal (hodograph) transformation (4)
into the above linear problem (43) and (44), we obtain the
linear 2× 2 system (Lax pair) for the coupled SP equation
[31]:

∂�

∂x
= Ũ� ,

∂�

∂t
= Ṽ� , (52)
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Figure 1 The numerical simulation of the 2-loop soliton solution of the SP equation. The poits shows the numerical values, and the
continuous curve shows the exact value, and the points on the bottom of graphs show the distribution of mesh grid points. p1 = 0.9, p2 = 0.5,
a1 = e−2, a2 = e−8.

where

Ũ = −iλ
(

1 ux
vx −1

)
, (53)

Ṽ =
( i

4λ − iλ
2 uv −u

2 − iλ
2 uvuxv

2 − iλ
2 uvvx − i

4λ + iλ
2 uv

)
, (54)

which can be rewritten as

Ũ = λ

(
1 ux
vx −1

)
, (55)

Ṽ =
( 1

4λ + λ
2uv −u

2 + λ
2uvuxv

2 + λ
2uvvx − 1

4λ − λ
2uv

)
, (56)

by replacing λ by iλ. The compatibility condition yields the
coupled SP equation [9,31]

uxt = u + 1
2
(uvux)x , (57)

vxt = v + 1
2
(uvvx)x . (58)

Letting u be a complex function and v = u∗ where u∗ is a
complex conjugate of u, the compatibility condition of the
above linear 2 × 2 systems yields the complex CD system
[26,30]

∂ρ

∂T
− ∂

∂X

(
−|u|2

2

)
= 0 , (59)

∂2u
∂X∂T

= ρu , (60)
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Figure 2 The numerical simulation of the loop-antiloop soliton solution of the SP equation. The points shows the numerical values, and the
continuous curve shows the exact value, and the points on the bottom of graphs show the distribution of mesh grid points. p1 = 0.9, p2 = 0.5,
a1 = e−2, a2 = −e−8.

∂2u∗

∂X∂T
= ρu∗ , (61)

and the complex SP equation [10]

uxt = u + 1
2
(|u|2ux)x , (62)

u∗
xt = u∗ + 1

2
(|u|2u∗

x)x . (63)

Note the complex CD system (59), (60) and (61) can be
transformed into the bilinear equations

D2
T f · f = 1

2
gg∗ , (64)

DXDTf · g = fg , (65)
DXDTf · g∗ = fg∗ , (66)

via the dependent variable transformation

u = g
f
, u∗ = g∗

f
, ρ = 1 − 2(ln f )XT . (67)

Using the dependent variables u(R) and u(I) such that
u(R) = Reu, u(I) = Imu, the complex SP equation can be
written as

u(R)
xt = u(R) + 1

2

((
u(R)2 + u(I)2

)
u(R)
x

)
x
, (68)

u(I)
xt = u(I) + 1

2

((
u(R)2 + u(I)2

)
u(I)
x

)
x
. (69)
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Figure 3 The numerical simulation of the breather solution of the SP equation. The points shows the numerical values, and the continuous
curve shows the exact value, and the points on the bottom of graphs show the distribution of mesh grid points. p1 = 0.4 + 0.44i, p2 = 0.4 − 0.44i,
a1 = (1 + i)e−2, a2 = (1 − i)e−8.

Consider the following linear 2 × 2 system (32) with

Uk =
(

1 − iλaρk −iλuk+1−uk
a

−iλ vk+1−vk
a 1 + iλaρk

)
, (70)

Vk =
( i

4λ −uk
2vk

2 − i
4λ

)
, (71)

where �k is a two-component vector. The compatibility
condition (32) with (70) and (71) yields the semi-discrete
coupled CD system

∂Tρk −
(−uk+1vk+1

2
) − (−ukvk

2
)

a
= 0 , (72)

∂T

(
uk+1 − uk

a

)
= ρk

uk+1 + uk
2

, (73)

∂T

(
vk+1 − vk

a

)
= ρk

vk+1 + vk
2

. (74)

We can rewrite Uk and Vk by using lattice intervals δk(=
aρk = xk+1 − xk) and replacing λ by iλ:

Uk =
(

1 + λδk λ
uk+1−uk

a
λ
vk+1−vk

a 1 − λδk

)
, (75)

Vk =
(

1
4λ −uk

2
vk
2 − 1

4λ

)
. (76)
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The compatibility condition of (32) with (75) and (76)
provides the self-adaptive moving mesh scheme for the
coupled SP equation

∂Tδk = −uk+1vk+1 + ukvk
2

, (77)

∂T (uk+1 − uk) = δk
uk+1 + uk

2
, (78)

∂T (vk+1 − vk) = δk
vk+1 + vk

2
, (79)

where xk = Xk + ∑k−1
j=0 δj and δk = xk+1 − xk , x0 = X0.

The discrete reciprocal (hodograph) transformation
xk = Xk + ∑k−1

j=0 δj yields

�

�Xk
= �

a
= �xk

a
�

�xk
= ρk

�

�xk
= ρk

�

δk
,

∂

∂T
= ∂

∂t
+ ∂xk

∂T
∂

∂xk
= ∂

∂t
+

k−1∑
j=0

∂δj

∂T
∂

∂xk

= ∂

∂t
+

⎛
⎝k−1∑

j=0

−uk+1vk+1 + ukvk
2

⎞
⎠ ∂

∂xk

= ∂

∂t
+

(−uk+1vk+1 + u0v0
2

)
∂

∂xk

(80)

= ∂

∂t
+

(−uk+1vk+1
2

)
∂

∂xk
,

if u0 = 0 , v0 = 0 .
(81)

Applying this to eqs. (78) and (79), we obtain

1
δk

∂(uk+1 − uk)
∂t

− uk+1vk+1
2

1
δk

∂(uk+1 − uk)
∂xk

= uk+1 + uk
2

,
(82)

1
δk

∂(vk+1 − vk)
∂t

− uk+1vk+1
2

1
δk

∂(vk+1 − vk)
∂xk

= vk+1 + vk
2

.
(83)

In the continuous limit δk → 0, this leads to the coupled
SP equation (57) and (58).
Note that the semi-discrete coupled CD system and the

self-adaptive moving mesh scheme for the coupled SP
equation can be transformed into the bilinear equations

D2
T fk · fk = 1

2
gkhk , (84)

1
a
DT

(
fk+1 · gk − fk · gk+1

) = 1
2

(
fk+1gk + fkgk+1

)
,
(85)

1
a
DT

(
fk+1 · hk − fk · hk+1

) = 1
2

(
fk+1hk + fkhk+1

)
,

(86)

via the dependent variable transformation

uk = gk
fk

, vk = hk
fk

,

ρk = δk
a

= 1 − 2
a

(
ln

fk+1
fk

)
T
.

(87)

By letting uk be a complex function and adding a con-
straint vk = u∗

k , we obtain the semi-discrete complex CD
system

∂Tρk −
(−uk+1vk+1

2
) −

(
−|uk |2

2

)
a

= 0 , (88)

∂T

(
uk+1 − uk

a

)
= ρk

uk+1 + uk
2

, (89)

∂T

(u∗
k+1 − u∗

k
a

)
= ρk

u∗
k+1 + u∗

k
2

, (90)

and the self-adaptive moving mesh scheme for the com-
plex SP equation

∂Tδk = −|uk+1|2 + |uk|2
2

, (91)

∂T (uk+1 − uk) = δk
uk+1 + uk

2
, (92)

∂T
(
u∗
k+1 − u∗

k
) = δk

u∗
k+1 + u∗

k
2

. (93)

Note that the semi-discrete complex CD system and the
self-adaptive moving mesh scheme for the complex SP
equation can be transformed into the bilinear equations

D2
T fk · fk = 1

2
gkg∗

k , (94)

1
a
DT

(
fk+1 · gk − fk · gk+1

) = 1
2

(
fk+1gk + fkgk+1

)
,

(95)

1
a
DT

(
fk+1 · g∗

k − fk · g∗
k+1

) = 1
2

(
fk+1g∗

k + fkg∗
k+1

)
,

(96)

via the dependent variable transformation

uk = gk
fk

, uk = g∗
k
fk

,

ρk = δk
a

= 1 − 2
a

(
ln

fk+1
fk

)
T
.

(97)
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Using the dependent variables u(R)

k and u(I)
k such that

u(R)

k = Reuk , u(I)
k = Imuk , the complex SP equation can

be written as

∂Tδk

= −1
2

((
u(R)

k+1

)2 +
(
u(I)
k+1

)2)

+ 1
2

((
u(R)

k+1

)2 +
(
u(I)
k+1

)2)
,

(98)

∂T (u(R)

k+1 − u(R)

k ) = δk
u(R)

k+1 + u(R)

k
2

, (99)

∂T (u(I)
k+1 − u(I)

k ) = δk
u(I)
k+1 + u(I)

k
2

. (100)

We remark that the discretization of the generalized CD
systems were proposed by Vinet and Yu recently [41,42].
Our results are consistent with their results.

Numerical simulations Here we show some examples of
numerical simulations of the complex SP equation using
the self-adaptive moving mesh scheme (91), (92) and (93).
As a time marching method, we use the improved Euler’s
method.
The multi-soliton solutions of the complex SP equation

(62) and (63) are given by the following formula:

u = g
f
, u∗ = g∗

f
, ρ = 1 − 2(ln f )XT , (101)

x = X0 +
∫ X

X0
ρ(X̃,T)dX̃ , t = T , (102)
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Figure 4 The numerical simulation of the 2 soliton solution of the complex SP equation. The points shows the numerical values, and the
continuous curve shows the exact value, and the points on the bottom of graphs show the distribution of mesh grid points. p1 = 0.5 + i,
p2 = 0.8 + 2i, a1 = e−6, a2 = e4.
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f =
∣∣∣∣ AN IN
−IN BN

∣∣∣∣ = |IN + ANBN | (103)

g =
∣∣∣∣∣∣
AN IN e�

N
−IN BN 0�
0 −aN 0

∣∣∣∣∣∣ (104)

g∗ =
∣∣∣∣∣∣
AN IN 0�
−IN BN a∗

N
�

e∗
N 0 0

∣∣∣∣∣∣ , (105)

where

AN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

eξ1+ξ∗
1

4(1/p1+1/p∗
1)

eξ1+ξ∗
2

4(1/p1+1/p∗
2)

· · · eξ1+ξ∗
N

4(1/p1+1/p∗
N)

eξ2+ξ∗
1

4(1/p2+1/p∗
1)

eξ2+ξ∗
2

4(1/p2+1/p∗
2)

· · · eξ2+ξ∗
N

4(1/p2+1/p∗
N)

...
...

. . .
...

eξN+ξ∗
1

4(1/pN+1/p∗
1)

eξN+ξ∗
2

4(1/pN+1/p∗
2)

· · · eξN+ξ∗
N

4(1/pN+1/p∗
N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

BN =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1a∗
1

1/p1+1/p∗
1

a2a∗
1

1/p2+1/p∗
1

· · · aNa∗
1

1/pN+1/p∗
1

a1a∗
2

1/p1+1/p∗
2

a2a∗
2

1/p2+1/p∗
2

· · · aNa∗
2

1/pN+1/p∗
2

...
...

. . .
...

a1a∗
N

1/p1+1/p∗
N

a2a∗
N

1/p2+1/p∗
N

· · · aNa∗
N

1/pN+1/p∗
N

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and IN is the N × N identity matrix, a� is the transpose
of a,

aN = (a1, a2, · · · , aN ) , eN = (
eξ1 , eξ2 , · · · , eξN )

,

a∗
N

(
a∗
1, a∗

2, · · · , a∗
N

)
, e∗

N =
(
eξ

∗
1 , eξ

∗
2 , · · · , eξ∗

N
)
,

0 = (0, 0, · · · , 0) ,

ξi = piX + 1
pi
T , ξ∗

i = p∗
i X + 1

p∗
i
T , 1 ≤ i ≤ N .
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Figure 5 The numerical simulation of the 2 soliton solution of the complex SP equation. The graphs show the real part of u of the complex SP
equation. The points shows the numerical values, and the continuous curve shows the exact value, and the points on the bottom of graphs show
the distribution of mesh grid points. p1 = 0.5 + i, p2 = 0.8 + 2i, a1 = e−6, a2 = e4.
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Note that this formula is obtained from the gram type
determinant solution of the coupled SP equation in
Appendix.
For example, the τ -functions f , g and g∗ of the 2-soliton

solution of the complex SP equation are written as

f = 1 + a1a∗
1p

2
1p∗

1
2

4
(
p1 + p∗

1
)2 eξ1+ξ∗

1 + a1a∗
2p

2
1p∗

2
2

4
(
p1 + p∗

2
)2 eξ1+ξ∗

2

+ a2a∗
1p

2
2p∗

1
2

4
(
p2 + p∗

1
)2 eξ2+ξ∗

1 + a2a∗
2p

2
2p∗

2
2

4
(
p2 + p∗

2
)2 eξ2+ξ∗

2

+ a1a∗
1a2a∗

2p
2
1p∗

1
2p22p∗

2
2 ( p1 − p2)2

(
p∗
1 − p∗

2
)2

16
(
p1 + p∗

1
)2 (

p1 + p∗
2
)2 (

p2 + p∗
1
)2 (

p2 + p∗
2
)2

× eξ1+ξ2+ξ∗
1 +ξ∗

2 ,
(106)

g = a1eξ1 + a2eξ2 + a1a2a∗
2(p1 − p2)2p∗

2
4

4
(
p1 + p∗

2
)2 (

p2 + p∗
2
)2 eξ1+ξ2+ξ∗

2

+ a1a∗
1a2( p1 − p2)2p∗

1
4

4
(
p1 + p∗

1
)2 (

p2 + p∗
1
)2 eξ1+ξ∗

1 +ξ2 ,

(107)

g∗ = a∗
1e

ξ∗
1 + a∗

2e
ξ∗
2 + a∗

1a2a∗
2
(
p∗
1 − p∗

2
)2 p24

4
(
p∗
1 + p2

)2 (
p2 + p∗

2
)2 eξ∗

1 +ξ2+ξ∗
2

+ a1a∗
1a∗

2
(
p∗
1 − p∗

2
)2 p14

4
(
p∗
1 + p1

)2 (
p1 + p∗

2
)2 eξ1+ξ∗

1 +ξ∗
2 ,

(108)

where

ξi = piX + 1
pi
T , i = 1, 2 .
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Figure 6 The numerical simulation of the 2 soliton solution of the complex SP equation. The graphs show the imaginary part of u of the
complex SP equation. The points shows the numerical values, and the continuous curve shows the exact value, and the points on the bottom of
graphs show the distribution of mesh grid points. p1 = 0.5 + i, p2 = 0.8 + 2i, a1 = e−6, a2 = e4.
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Figure 4 shows the numerical simulation of the 2 soli-
ton solution of the complex SP equation (62) and (63)
by means of the self-adaptive moving mesh scheme (91),
(92), and (93). Figures 5 and 6 show the graphs of the
real part and the imaginary part of u of the complex SP
equation (62) and (63), respectively. Thus these graphs are
the solution of equations (68) and (69).We use the number
of mesh grid points N = 300, the width of the compu-
tational domain D = 100, and the time interval dt =
0.00005. Again, the numerical result has good agreement
with the exact solution of the complex SP equation.

4 Concluding remarks
We have proposed two systematic methods for con-
structing self-adaptive moving mesh schemes for a class
of nonlinear wave equations which are transformed
into a different class of nonlinear wave equations by
reciprocal (hodograph) transformations.We have demon-
strated how to create self-adaptive moving mesh schemes
for short pulse type equations which are transformed
into coupled dispersionless type systems by a reciprocal
(hodograph) transformation. Self-adaptive moving mesh
schemes have exact solutions such as multi-soliton solu-
tions and Lax pairs, thus those schemes are integrable.
Self-adaptive moving mesh schemes consist of two semi-
discrete equations in which the time is continuous and the
space is discrete. In self-adaptive moving mesh schemes,
one of two equations is an evolution equation of mesh
intervals which is deeply related to a discrete analogue
of a reciprocal (hodograph) transformation. An evolution
equations of mesh intervals is a discrete analogue of a con-
servation law of an original equation, and a set of mesh
intervals corresponds to a conserved density which play a
key role in generation of adaptive moving mesh. We have
shown several examples of numerical computations of the
short pulse type equations by using self-adaptive moving
mesh schemes.
In our previous papers, we have investigated how to

discretize the Camassa-Holm [13,34], the Hunter-Saxton
[35], the short pulse [11,14], the WKI elastic beam [11],
the Dym equation [12,14] by using bilinear methods or by
using a geometric approach. Based on our previous stud-
ies, we have proposed two systematic methods in sophis-
ticated forms, one uses bilinear equations and another
uses Lax pairs, for producing self-adaptive moving mesh
schemes. Although we have discussed only short pulse
type equations in this paper, our methods can be used to
construct self-adaptive moving mesh schemes for other
nonlinear wave equations in the WKI class.
More details about exact solutions, fully discretizations,

and numerical computations of self-adaptive moving
mesh schemes for the coupled SP equation, the com-
plex SP equation, and their generalized equations will be
discussed in our forthcoming papers.

5 Appendix
The multi-soliton solutions of the coupled SP equation
(57) and (58) are given by the following formula:

u = g
f
, v = h

f
, ρ = 1 − 2(ln f )XT , (109)

x = X0 +
∫ X

X0
ρ

(
X̃,T

)
dX̃ , t = T , (110)

f =
∣∣∣∣ AN IN
−IN BN

∣∣∣∣ = |IN + ANBN | , (111)

g =

∣∣∣∣∣∣∣
AN IN e(1)

N
�

−IN BN 0�
0 −a(1)

N 0

∣∣∣∣∣∣∣ , (112)

h =

∣∣∣∣∣∣∣
AN IN 0�

−IN BN a(2)
N

�

e(2)
N 0 0

∣∣∣∣∣∣∣ , (113)

where

AN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eξ1+ξN+1

4
(

1
p1

+ 1
pN+1

) eξ1+ξN+2

4
(

1
p1

+ 1
pN+2

) · · · eξ1+ξ2N

4
(

1
p1

+ 1
p2N

)
eξ2+ξN+1

4
(

1
p2

+ 1
pN+1

) eξ2+ξN+2

4
(

1
p2

+ 1
pN+2

) · · · eξ2+ξ2N

4
(

1
p2

+ 1
p2N

)
...

...
. . .

...
eξN+ξN+1

4
(

1
pN

+ 1
pN+1

) eξN+ξN+2

4
(

1
pN

+ 1
pN+2

) · · · eξN+ξ2N

4
(

1
pN

+ 1
p2N

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

BN =

⎛
⎜⎜⎜⎜⎝

a1aN+1
1/p1+1/pN+1

a2aN+1
1/p2+1/pN+1

· · · aNaN+1
1/pN+1/pN+1a1aN+2

1/p1+1/pN+2
a2aN+2

1/p2+1/pN+2
· · · aNaN+2

1/pN+1/pN+2
...

...
. . .

...
a1a2N

1/p1+1/p2N
a2a2N

1/p2+1/p2N · · · aNa2N
1/pN+1/p2N

⎞
⎟⎟⎟⎟⎠ ,

and IN is the N × N identity matrix, a� is the transpose
of a,

a(1)
N = (a1, a2, · · · , aN ) , e(1)

N = (
eξ1 , eξ2 , · · · , eξN )

,

a(2)
N = (aN+1, aN+2, · · · , a2N ) ,

e(2)
N = (

eξN+1 , eξN+2 , · · · , eξ2N )
,

0 = (0, 0, · · · , 0) ,

ξi = piX + 1
pi
T , 1 ≤ i ≤ 2N .
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