2,003 research outputs found

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Synoptic analysis techniques for intrusion detection in wireless networks

    Get PDF
    Current system administrators are missing intrusion alerts hidden by large numbers of false positives. Rather than accumulation more data to identify true alerts, we propose an intrusion detection tool that e?ectively uses select data to provide a picture of ?network health?. Our hypothesis is that by utilizing the data available at both the node and cooperative network levels we can create a synoptic picture of the network providing indications of many intrusions or other network issues. Our major contribution is to provide a revolutionary way to analyze node and network data for patterns, dependence, and e?ects that indicate network issues. We collect node and network data, combine and manipulate it, and tease out information about the state of the network. We present a method based on utilizing the number of packets sent, number of packets received, node reliability, route reliability, and entropy to develop a synoptic picture of the network health in the presence of a sinkhole and a HELLO Flood attacker. This method conserves network throughput and node energy by requiring no additional control messages to be sent between the nodes unless an attacker is suspected. We intend to show that, although the concept of an intrusion detection system is not revolutionary, the method in which we analyze the data for clues about network intrusion and performance is highly innovative

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Survey on the Communication Protocols and Security in Cognitive Radio Networks

    Get PDF
    A cognitive radio (CR) is a radio that can change its transmission parameters based on the perceived availability of the spectrum bands in its operating environment. CRs support dynamic spectrum access and can facilitate a secondary unlicensed user to efficiently utilize the available underutilized spectrum allocated to the primary licensed users. A cognitive radio network (CRN) is composed of both the secondary users with CR-enabled radios and the primary users whose radios need not be CR-enabled. Most of the active research conducted in the area of CRNs has been so far focused on spectrum sensing, allocation and sharing. There is no comprehensive review paper available on the strategies for medium access control (MAC), routing and transport layer protocols, and the appropriate representative solutions for CRNs. In this paper, we provide an exhaustive analysis of the various techniques/mechanisms that have been proposed in the literature for communication protocols (at the MAC, routing and transport layers), in the context of a CRN, as well as discuss in detail several security attacks that could be launched on CRNs and the countermeasure solutions that have been proposed to avoid or mitigate them. This paper would serve as a good comprehensive review and analysis of the strategies for MAC, routing and transport protocols and security issues for CRNs as well as would lay a strong foundation for someone to further delve onto any particular aspect in greater depth
    • …
    corecore