2 research outputs found

    UNICARagil - Disruptive Modular Architectures for Agile, Automated Vehicle Concepts

    Get PDF
    This paper introduces UNICARagil, a collaborative project carried out by a consortium of seven German universities and six industrial partners, with funding provided by the Federal Ministry of Education and Research of Germany. In the scope of this project, disruptive modular structures for agile, automated vehicle concepts are researched and developed. Four prototype vehicles of different characteristics based on the same modular platform are going to be build up over a period of four years. The four fully automated and driverless vehicles demonstrate disruptive architectures in hardware and software, as well as disruptive concepts in safety, security, verification and validation. This paper outlines the most important research questions underlying the project

    Cyberattacks and Countermeasures For In-Vehicle Networks

    Full text link
    As connectivity between and within vehicles increases, so does concern about safety and security. Various automotive serial protocols are used inside vehicles such as Controller Area Network (CAN), Local Interconnect Network (LIN) and FlexRay. CAN bus is the most used in-vehicle network protocol to support exchange of vehicle parameters between Electronic Control Units (ECUs). This protocol lacks security mechanisms by design and is therefore vulnerable to various attacks. Furthermore, connectivity of vehicles has made the CAN bus not only vulnerable from within the vehicle but also from outside. With the rise of connected cars, more entry points and interfaces have been introduced on board vehicles, thereby also leading to a wider potential attack surface. Existing security mechanisms focus on the use of encryption, authentication and vehicle Intrusion Detection Systems (IDS), which operate under various constrains such as low bandwidth, small frame size (e.g. in the CAN protocol), limited availability of computational resources and real-time sensitivity. We survey In-Vehicle Network (IVN) attacks which have been grouped under: direct interfaces-initiated attacks, telematics and infotainment-initiated attacks, and sensor-initiated attacks. We survey and classify current cryptographic and IDS approaches and compare these approaches based on criteria such as real time constrains, types of hardware used, changes in CAN bus behaviour, types of attack mitigation and software/ hardware used to validate these approaches. We conclude with potential mitigation strategies and research challenges for the future
    corecore