10,018 research outputs found

    Efficient Data Collection in Multimedia Vehicular Sensing Platforms

    Full text link
    Vehicles provide an ideal platform for urban sensing applications, as they can be equipped with all kinds of sensing devices that can continuously monitor the environment around the travelling vehicle. In this work we are particularly concerned with the use of vehicles as building blocks of a multimedia mobile sensor system able to capture camera snapshots of the streets to support traffic monitoring and urban surveillance tasks. However, cameras are high data-rate sensors while wireless infrastructures used for vehicular communications may face performance constraints. Thus, data redundancy mitigation is of paramount importance in such systems. To address this issue in this paper we exploit sub-modular optimisation techniques to design efficient and robust data collection schemes for multimedia vehicular sensor networks. We also explore an alternative approach for data collection that operates on longer time scales and relies only on localised decisions rather than centralised computations. We use network simulations with realistic vehicular mobility patterns to verify the performance gains of our proposed schemes compared to a baseline solution that ignores data redundancy. Simulation results show that our data collection techniques can ensure a more accurate coverage of the road network while significantly reducing the amount of transferred data

    Vehicle to vehicle (V2V) wireless communications

    Get PDF
    This work focuses on the vehicle-to-vehicle (V2V) communication, its current challenges, future perspective and possible improvement.V2V communication is characterized by the dynamic environment, high mobility, nonpredective scenario, propagation effects, and also communicating antenna's positions. This peculiarity of V2V wireless communication makes channel modelling and the vehicular propagation quite challenging. In this work, firstly we studied the present context of V2V communication also known as Vehicular Ad-hoc Netwok (VANET) including ongoing researches and studies particularly related to Dedicated Short Range Communication (DSRC), specifically designed for automotive uses with corresponding set of protocols and standards. Secondly, we focused on communication models and improvement of these models to make them more suitable, reliable and efficient for the V2V environment. As specifies the standard, OFDM is used in V2V communication, Adaptable OFDM transceiver was designed. Some parameters as performance analytics are used to compare the improvement with the actual situation. For the enhancement of physical layer of V2V communication, this work is focused in the study of MIMO channel instead of SISO. In the designed transceiver both SISO and MIMO were implemented and studied successfully

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Efficient and Privacy-Preserving Ride Sharing Organization for Transferable and Non-Transferable Services

    Full text link
    Ride-sharing allows multiple persons to share their trips together in one vehicle instead of using multiple vehicles. This can reduce the number of vehicles in the street, which consequently can reduce air pollution, traffic congestion and transportation cost. However, a ride-sharing organization requires passengers to report sensitive location information about their trips to a trip organizing server (TOS) which creates a serious privacy issue. In addition, existing ride-sharing schemes are non-flexible, i.e., they require a driver and a rider to have exactly the same trip to share a ride. Moreover, they are non-scalable, i.e., inefficient if applied to large geographic areas. In this paper, we propose two efficient privacy-preserving ride-sharing organization schemes for Non-transferable Ride-sharing Services (NRS) and Transferable Ride-sharing Services (TRS). In the NRS scheme, a rider can share a ride from its source to destination with only one driver whereas, in TRS scheme, a rider can transfer between multiple drivers while en route until he reaches his destination. In both schemes, the ride-sharing area is divided into a number of small geographic areas, called cells, and each cell has a unique identifier. Each driver/rider should encrypt his trip's data and send an encrypted ride-sharing offer/request to the TOS. In NRS scheme, Bloom filters are used to compactly represent the trip information before encryption. Then, the TOS can measure the similarity between the encrypted trips data to organize shared rides without revealing either the users' identities or the location information. In TRS scheme, drivers report their encrypted routes, an then the TOS builds an encrypted directed graph that is passed to a modified version of Dijkstra's shortest path algorithm to search for an optimal path of rides that can achieve a set of preferences defined by the riders
    • …
    corecore