509 research outputs found

    Dynamics of Blockchain Implementation - A Case Study from the Energy Sector

    Get PDF
    This case study analyzes the impact of theory-based factors on the implementation of different blockchain technologies in use cases from the energy sector. We construct an integrated research model based on the Diffusion of Innovations theory, institutional economics and the Technology-Organization-Environment framework. Using qualitative data from in-depth interviews, we link constructs to theory and assess their impact on each use case. Doing so we can depict the dynamic relations between different blockchain technologies and the energy sector. The study provides insights for decision makers in electric utilities, and government administrations

    SoK: Consensus in the Age of Blockchains

    Get PDF
    The core technical component of blockchains is consensus: how to reach agreement among a distributed network of nodes. A plethora of blockchain consensus protocols have been proposed---ranging from new designs, to novel modifications and extensions of consensus protocols from the classical distributed systems literature. The inherent complexity of consensus protocols and their rapid and dramatic evolution makes it hard to contextualize the design landscape. We address this challenge by conducting a systematization of knowledge of blockchain consensus protocols. After first discussing key themes in classical consensus protocols, we describe: (i) protocols based on proof-of-work; (ii) proof-of-X protocols that replace proof-of-work with more energy-efficient alternatives; and (iii) hybrid protocols that are compositions or variations of classical consensus protocols. This survey is guided by a systematization framework we develop, to highlight the various building blocks of blockchain consensus design, along with a discussion on their security and performance properties. We identify research gaps and insights for the community to consider in future research endeavours

    CALYPSO: Private Data Management for Decentralized Ledgers

    Get PDF
    Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed Calypso architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs. Calypso introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. Calypso provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our Calypso prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange
    corecore