347 research outputs found

    A scalable multimode base station switching model for green cellular networks

    Get PDF
    Recently, base station (BS) sleeping has emerged as a viable conservation strategy for energy efficient communication networks. Switching-off particular BS during low-traffic periods requires the load to be sufficiently low so user performance is not compromised. There remain however, network energy saving opportunities during medium-to-high traffic periods if BSs operate in scalable fashion, which involves deploying multiple BSs with different power modes, i.e., macro/microcells, which are colocated in each cell. In this paper, a new scalable multimode BS switching (MMBS) cellular model is presented where depending on the traffic load, each BS operates in multimode: active, low-power and sleep, so the model dimensions network capacity by dynamically switching modes to minimise energy consumption. Results corroborate that the MMBS model reduces energy consumption by more than 50% during low-traffic and up to 9% during high-traffic conditions, thereby significantly improving the energy efficiency compared with the always-on and existing BS sleeping approaches

    A scalable multimode base station switching model for green cellular networks

    Full text link

    Evaluating energy-efficient cloud radio access networks for 5G

    Get PDF
    YesNext-generation cellular networks such as fifth-generation (5G) will experience tremendous growth in traffic. To accommodate such traffic demand, there is a necessity to increase the network capacity that eventually requires the deployment of more base stations (BSs). Nevertheless, BSs are very expensive and consume a significant amount of energy. Meanwhile, cloud radio access networks (C-RAN) has been proposed as an energy-efficient architecture that leverages cloud computing technology where baseband processing is performed in the cloud, i.e., the computing servers or baseband processing units (BBUs) are located in the cloud. With such an arrangement, more energy saving gains can be achieved by reducing the number of BBUs used. This paper proposes a bin packing scheme with three variants such as First-fit (FT), First-fit decreasing (FFD) and Next-fit (NF) for minimizing energy consumption in 5G C-RAN. The number of BBUs are reduced by matching the right amount of baseband computing load with traffic load. In the proposed scheme, BS traffic items that are mapped into processing requirements, are to be packed into computing servers, called bins, such that the number of bins used are minimized and idle servers can then be switched off to save energy. Simulation results demonstrate that the proposed bin packing scheme achieves an enhanced energy performance compared to the existing distributed BS architecture

    Energy efficient optimization of a sleep mode strategy in heterogeneous cellular networks

    Get PDF

    Statistical Review Evaluation of 5G Antenna Design Models from a Pragmatic Perspective under Multi-Domain Application Scenarios

    Get PDF
    Antenna design for the 5G spectrum requires analysis of contextual frequency bands, design of miniaturization techniques, gain improvement models, polarization techniques, standard radiation pattern designs, metamaterial integration, and substrate selection. Most of these models also vary in terms of qualitative & and quantitative parameters, which include forward gain levels, reverse gain, frequency response, substrate types, antenna shape, feeding levels, etc. Due to such a wide variety in performance, it is ambiguous for researchers to identify the optimum models for their application-specific use cases. This ambiguity results in validating these models on multiple simulation tools, which increases design delays and the cost of deployments. To reduce this ambiguity, a survey of recently proposed antenna design models is discussed in this text. This discussion recommended that polarization optimization and gain maximization are the major impact factors that must be considered while designing antennas. It is also recommended that collocated microstrip slot antennas, fully planar dual-polarized broadband antennas, and real-time deployments of combined slot antenna pairs with wide-band decoupling are very advantageous. Based on this discussion, researchers will be able to identify optimal performance-specific models for different applications. This discussion also compares underlying models in terms of their quantitative parameters, which include forward gain levels, bandwidth, complexity of deployment, scalability, and cost metrics. Upon referring to this comparison, researchers will be able to identify the optimum models for their performance-specific use cases. This review also formulates a novel Antenna Design Rank Metric (ADRM) that combines the evaluated parameters, thereby allowing readers to identify antenna design models that are optimized for multiple parameters and can be used for large-scale 5G communication scenarios

    Cost-effective Information and Communication Technology (ICT) infrastructure for Tanziania

    Get PDF
    The research conducted an Information and Communication Technology (ICT) field survey, the results revealed that Tanzania is still lagging behind in the ICT sector due to the lack of an internationally connected terrestrial ICT infrastructure; Internet connectivity to the rest of the world is via expensive satellite links, thus leaving the majority of the population unable to access the Internet services due to its high cost. Therefore, an ICT backbone infrastructure is designed that exploits optical DWDM network technology, which un-locks bandwidth bottlenecks and provides higher capacity which will provide ICT services such as Internet, voice, videos and other multimedia interactions at an affordable cost to the majority of the people who live in the urban and rural areas of Tanzania. The research analyses and compares the performance, and system impairments, in a DWDM system at data transmission rates of 2.5 Gb/s and 10 Gb/s per wavelength channel. The simulation results show that a data transmission rate of 2.5 Gb/s can be successfully transmitted over a greater distance than 10 Gb/s with minimum system impairments. Also operating at the lower data rate delivers a good system performance for the required ICT services. A forty-channel DWDM system will provide a bandwidth of 100 Gb/s. A cost analysis demonstrates the economic worth of incorporating existing optical fibre installations into an optical DWDM network for the creation of an affordable ICT backbone infrastructure; this approach is compared with building a completely new optical fibre DWDM network or a SONET/SDH network. The results show that the ICT backbone infrastructure built with existing SSMF DWDM network technology is a good investment, in terms of profitability, even if the Internet charges are reduced to half current rates. The case for building a completely new optical fibre DWDM network or a SONET/SDH network is difficult to justify using current financial data

    4G and Beyond - Exploiting Heterogeneity in Mobile Networks

    Get PDF
    • …
    corecore