11,180 research outputs found

    Multi-user video streaming using unequal error protection network coding in wireless networks

    Get PDF
    In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks

    Temporal video transcoding from H.264/AVC-to-SVC for digital TV broadcasting

    Get PDF
    Mobile digital TV environments demand flexible video compression like scalable video coding (SVC) because of varying bandwidths and devices. Since existing infrastructures highly rely on H.264/AVC video compression, network providers could adapt the current H.264/AVC encoded video to SVC. This adaptation needs to be done efficiently to reduce processing power and operational cost. This paper proposes two techniques to convert an H.264/AVC bitstream in Baseline (P-pictures based) and Main Profile (B-pictures based) without scalability to a scalable bitstream with temporal scalability as part of a framework for low-complexity video adaptation for digital TV broadcasting. Our approaches are based on accelerating the interprediction, focusing on reducing the coding complexity of mode decision and motion estimation tasks of the encoder stage by using information available after the H. 264/AVC decoding stage. The results show that when our techniques are applied, the complexity is reduced by 98 % while maintaining coding efficiency

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations
    • …
    corecore