6 research outputs found

    A Cost-Equation Analysis for General-Input General-Service Processor Sharing (PS) System

    Get PDF

    A QoS-aware workload routing and server speed scaling policy for energy-efficient data centers: a robust queueing theoretic approach

    Full text link
    Maintaining energy efficiency in large data centers depends on the ability to manage workload routing and control server speeds according to fluctuating demand. The use of dynamic algorithms often means that management has to install the complicated software or expensive hardware needed to communicate with routers and servers. This paper proposes a static routing and server speed scaling policy that may achieve energy efficiency similar to dynamic algorithms and eliminate the necessity of frequent communications among resources without compromising quality of service (QoS). We use a robust queueing approach to consider the response time constraints, e.g., service level agreements (SLAs). We model each server as a G/G/1G/G/1 processor sharing (PS) queue and use uncertainty sets to define the domain of random variables. A comparison with a dynamic algorithm shows that the proposed static policy provides competitive solutions in terms of energy efficiency and satisfactory QoS

    Sabisu kiritsu o koryoshita GI/GI/1 machi gyoretsu shisutemu no kakusan kinjiho ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3539号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/25 ; 早大学位記番号:新587

    Delay analysis for wireless applications using a multiservice multiqueue processor sharing model

    Get PDF
    The ongoing development of wireless networks supporting multimedia applications requires service providers to efficiently deliver complex Quality of Service (QoS) requirements. The wide range of new applications in these networks significantly increases the difficulty of network design and dimensioning to meet QoS requirements. Medium Access Control (MAC) protocols affect QoS achieved by wireless networks. Research on analysis and performance evaluation is important for the efficient protocol design. As wireless networks feature scarce resources that are simultaneously shared by all users, processor sharing (PS) models were proposed for modelling resource sharing mechanisms in such systems. In this thesis, multi-priority MAC protocols are proposed for handling the various service traffic types. Then, an investigation of multiservice multiqueue PS models is undertaken to analyse the delay for some recently proposed wireless applications. We start with an introduction to MAC protocols for wireless networks which are specified in IEEE standards and then review scheduling algorithms which were proposed to work with the underlying MAC protocols to cooperatively achieve QoS goals. An overview of the relevant literature is given on PS models for performance analysis and evaluation of scheduling algorithms. We propose a multiservice multiqueue PS model using a scheduling scheme in multimedia wireless networks with a comprehensive description of the analytical solution. Firstly, we describe the existing multiqueue processor sharing (MPS) model, which uses a fixed service quantum at each queue, and correct a subtle incongruity in previous solutions presented in the literature. Secondly, a new scheduling framework is proposed to extend the previous MPS model to a general case. This newly proposed analytical approach is based on the idea that the service quantum arranged by a MAC scheduling controller to service data units can be priority-based. We obtain a closed-form expression for the mean delay of each service class in this model. In summary, our new approach simplifies MAC protocols for multimedia applications into an analytical model that includes more complex and realistic traffic models without compromising details of the protocol and significantly reduces the number of MAC headers, thus the overall average delay will be decreased. In response to using the studied multiservice multiqueue PS models, we apply the MPS model to two wireless applications: Push to Talk (PTT) service over GPRS/GSM networks and the Worldwide Interoperability for Microwave Access (WiMAX) networks. We investigate the uplink delay of PTT over traditional GPRS/GSM networks and the uplink delay for WiMAX Subscriber Station scheduler under a priority-based fair scheduling. MAC structures capable of supporting dynamically varying traffic are studied for the networks, especially, with the consideration of implementation issues. The model provides useful insights into the dynamic performance behaviours of GPRS/GSM and WiMAX networks with respect to various system parameters and comprehensive traffic conditions. We then evaluate the model under some different practical traffic scenarios. Through modelling of the operation of wireless access systems, under a variety of multimedia traffic, our analytical approaches provide practical analysis guidelines for wireless network dimensioning

    A Modelling Framework for Common Radio Resource Management in Mobile Communication Systems

    Get PDF
    Im Rahmen dieser Arbeit wurde ein Modellierungsframework für die Untersuchung der technologieübergreifenden Verwaltung von Ressourcen heterogener Funkzugangsnetze (Common Radio Resource Management – CRRM) entwickelt. Die fünf Komponenten Umwelt (ENV), Nutzerendgerät (UE), Funkzugangssystem (RAS), CRRM-Informationsmanager (CRRM-IM) und CRRM-Entscheider (CRRM-D) können für die Gestaltung von zentralen bis dezentralen CRRM-Architekturen kombiniert werden. Sie decken damit ein weites Spektrum an möglichen CRRM-Einsatzszenarien ab. Dabei ermöglicht eine klare Struktur des zugrunde liegenden Modells die einfache Übertragung von Lösungsmethoden aus dem Gebiet der Multikriterienoptimierung. Ein integriertes Kostenmodell ermöglicht eine Kosten-/ Nutzen-Analyse für CRRM-Algorithmen und Architekturen. Die Verwendung eines hybriden Simulationsmodells ermöglicht die einfache Integration analytischer Funkzugangstechnologiemodelle und die Simulation komplexer Szenarien mit geringem Zeit- und Speicherbedarf. Hierbei liefern simulative Teilmodelle zeitgetreu neue Eingabeparameter für analytische Teilmodelle, deren Ausgabeparameter wiederum die Eingabeparameter der simulativen Teilmodelle sind. Nach diesem Modell wurde der auf OMNeT++ basierende diskrete ereignisorientierte Simulator HEKATE entwickelt. Der Simulator erwies sich als geeignet die zeiteffiziente Untersuchung von CRRM-Szenarien für UMTS- und GSM/EGPRS-Funkzugangssysteme durchzuführen.This work presents a modeling framework for the efficient evaluation of Common Radio Resource Management (CRRM). Centralized as well as decentralized scenarios can be clearly defined by five standard components, namely the radio access system (RAS), the environment (ENV), the user equipment (UE), the CRRM information manager (CRRM-IM), and the CRRM decider (CRRM-D). The clarity of the model enables an efficient investigation of CRRM algorithms based on multi-criteria optimization theory. The integrated cost model makes possible a cost-benefit investigation of different CRRM algorithms and architectures. A hybrid simulation model, where a simulation model and an analytical model operate in parallel over time, leads to low time and memory demands even for the simulation of complex scenarios. Additionally it allows for a convenient and straightforward integration of different analytical models for wireless network technologies. A discrete event simulator named HEKATE is based on this hybrid simulation model which has been implemented using OMNeT++. The scope of the proposed framework is demonstrated by the evaluation of realistic CRRM scenarios for UMTS and GSM/EGPRS
    corecore