5 research outputs found

    A rule-based ontological framework for the classification of molecules

    Get PDF
    BACKGROUND: A variety of key activities within life sciences research involves integrating and intelligently managing large amounts of biochemical information. Semantic technologies provide an intuitive way to organise and sift through these rapidly growing datasets via the design and maintenance of ontology-supported knowledge bases. To this end, OWL-a W3C standard declarative language- has been extensively used in the deployment of biochemical ontologies that can be conveniently organised using the classification facilities of OWL-based tools. One of the most established ontologies for the chemical domain is ChEBI, an open-access dictionary of molecular entities that supplies high quality annotation and taxonomical information for biologically relevant compounds. However, ChEBI is being manually expanded which hinders its potential to grow due to the limited availability of human resources. RESULTS: In this work, we describe a prototype that performs automatic classification of chemical compounds. The software we present implements a sound and complete reasoning procedure of a formalism that extends datalog and builds upon an off-the-shelf deductive database system. We capture a wide range of chemical classes that are not expressible with OWL-based formalisms such as cyclic molecules, saturated molecules and alkanes. Furthermore, we describe a surface 'less-logician-like' syntax that allows application experts to create ontological descriptions of complex biochemical objects without prior knowledge of logic. In terms of performance, a noticeable improvement is observed in comparison with previous approaches. Our evaluation has discovered subsumptions that are missing from the manually curated ChEBI ontology as well as discrepancies with respect to existing subclass relations. We illustrate thus the potential of an ontology language suitable for the life sciences domain that exhibits a favourable balance between expressive power and practical feasibility. CONCLUSIONS: Our proposed methodology can form the basis of an ontology-mediated application to assist biocurators in the production of complete and error-free taxonomies. Moreover, such a tool could contribute to a more rapid development of the ChEBI ontology and to the efforts of the ChEBI team to make annotated chemical datasets available to the public. From a modelling point of view, our approach could stimulate the adoption of a different and expressive reasoning paradigm based on rules for which state-of-the-art and highly optimised reasoners are available; it could thus pave the way for the representation of a broader spectrum of life sciences and biomedical knowledge.</p

    A rule-based ontological framework for the classification of molecules

    Full text link

    Terminologías y sistemas de clasificación en ciencias biomédicas

    Get PDF
    Las terminologías surgieron como un intento de reducir la diversidad terminológica en el lenguaje científico, facilitando una buena comunicación, que es la base de toda investigación científica. Esta revisión explica los principios y las aplicaciones asociadas con las terminologías y los sistemas de clasificación, centrándose en el campo de las ciencias biomédicas. La investigación fue realizada en bases de datos científicas, libros y la internet, utilizando las palabras clave: Terminología, sistemas de clasificación, interoperabilidad, ontologías y Bio-ontologías. Esta revisión tiene por objeto explicar que las terminologías facilitan una buena comunicación, reduciendo la diversidad terminológica y además explicando que no son sistemas estáticos. Ellas pueden "evolucionar" para formar estructuras complejas como ontologías biomédicas, con el objetivo de ser utilizadas con múltiples propósitos que comienzan con la transferencia eficiente de la información, hasta el procesamiento de información obtenida de la investigación biológica para su comprensión.Palabras clave: Terminología, sistema de clasificación, interoperabilidad, ontología.Terminologies and classification systems in biomedical sciencesABSTRACTStandards terminologies emerged as an attempt to reduce the diversity terminology in scientific languages, facilitating good communication, which is the basis of all scientific research. This review explains principles and applications associated with terminologies and classification systems focusing mainly on the field of biomedical sciences. The research was conducted on scientific databases, books and network using the keywords: Terminologies, Classification systems, Medical Informatics, Electronic Health Records systems, Interoperability, Ontologies and Bio-ontologies. This review is intended to explain that terminologies facilitate good communication, reducing terminology diversity and they are not static systems. They can “evolve” to more complex structures like biomedical ontologies, with the aim of being used with multiple purposes beginning with the efficient transfer of information, to the processing of information as a result of biological research for its understanding.Keywords: Terminology, Classification system, Interoperability, Ontology. </p

    CASSANDRA: drug gene association prediction via text mining and ontologies

    Get PDF
    The amount of biomedical literature has been increasing rapidly during the last decade. Text mining techniques can harness this large-scale data, shed light onto complex drug mechanisms, and extract relation information that can support computational polypharmacology. In this work, we introduce CASSANDRA, a fully corpus-based and unsupervised algorithm which uses the MEDLINE indexed titles and abstracts to infer drug gene associations and assist drug repositioning. CASSANDRA measures the Pointwise Mutual Information (PMI) between biomedical terms derived from Gene Ontology (GO) and Medical Subject Headings (MeSH). Based on the PMI scores, drug and gene profiles are generated and candidate drug gene associations are inferred when computing the relatedness of their profiles. Results show that an Area Under the Curve (AUC) of up to 0.88 can be achieved. The algorithm can successfully identify direct drug gene associations with high precision and prioritize them over indirect drug gene associations. Validation shows that the statistically derived profiles from literature perform as good as (and at times better than) the manually curated profiles. In addition, we examine CASSANDRA’s potential towards drug repositioning. For all FDA-approved drugs repositioned over the last 5 years, we generate profiles from publications before 2009 and show that the new indications rank high in these profiles. In summary, co-occurrence based profiles derived from the biomedical literature can accurately predict drug gene associations and provide insights onto potential repositioning cases

    A rule-based ontological framework for the classification of molecules

    Get PDF
    BACKGROUND: A variety of key activities within life sciences research involves integrating and intelligently managing large amounts of biochemical information. Semantic technologies provide an intuitive way to organise and sift through these rapidly growing datasets via the design and maintenance of ontology-supported knowledge bases. To this end, OWL-a W3C standard declarative language- has been extensively used in the deployment of biochemical ontologies that can be conveniently organised using the classification facilities of OWL-based tools. One of the most established ontologies for the chemical domain is ChEBI, an open-access dictionary of molecular entities that supplies high quality annotation and taxonomical information for biologically relevant compounds. However, ChEBI is being manually expanded which hinders its potential to grow due to the limited availability of human resources. RESULTS: In this work, we describe a prototype that performs automatic classification of chemical compounds. The software we present implements a sound and complete reasoning procedure of a formalism that extends datalog and builds upon an off-the-shelf deductive database system. We capture a wide range of chemical classes that are not expressible with OWL-based formalisms such as cyclic molecules, saturated molecules and alkanes. Furthermore, we describe a surface 'less-logician-like' syntax that allows application experts to create ontological descriptions of complex biochemical objects without prior knowledge of logic. In terms of performance, a noticeable improvement is observed in comparison with previous approaches. Our evaluation has discovered subsumptions that are missing from the manually curated ChEBI ontology as well as discrepancies with respect to existing subclass relations. We illustrate thus the potential of an ontology language suitable for the life sciences domain that exhibits a favourable balance between expressive power and practical feasibility. CONCLUSIONS: Our proposed methodology can form the basis of an ontology-mediated application to assist biocurators in the production of complete and error-free taxonomies. Moreover, such a tool could contribute to a more rapid development of the ChEBI ontology and to the efforts of the ChEBI team to make annotated chemical datasets available to the public. From a modelling point of view, our approach could stimulate the adoption of a different and expressive reasoning paradigm based on rules for which state-of-the-art and highly optimised reasoners are available; it could thus pave the way for the representation of a broader spectrum of life sciences and biomedical knowledge.</p
    corecore