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Abstract

The amount of biomedical literature has been increasing rapidly during

the last decade. Text mining techniques can harness this large-scale data,

shed light onto complex drug mechanisms, and extract relation information

that can support computational polypharmacology. In this work, we in-

troduce CASSANDRA, a fully corpus-based and unsupervised algorithm

which uses the MEDLINE indexed titles and abstracts to infer drug gene

associations and assist drug repositioning. CASSANDRA measures the

Pointwise Mutual Information (PMI ) between biomedical terms derived

from Gene Ontology (GO) and Medical Subject Headings (MeSH ). Based

on the PMI scores, drug and gene profiles are generated and candidate drug

gene associations are inferred when computing the relatedness of their pro-

files. Results show that an Area Under the Curve (AUC ) of up to 0.88

can be achieved. The algorithm can successfully identify direct drug gene

associations with high precision and prioritize them over indirect drug gene

associations. Validation shows that the statistically derived profiles from

literature perform as good as (and at times better than) the manually cu-

rated profiles. In addition, we examine CASSANDRA’s potential towards

drug repositioning. For all FDA-approved drugs repositioned over the last

5 years, we generate profiles from publications before 2009 and show that

the new indications rank high in these profiles. In summary, co-occurrence

based profiles derived from the biomedical literature can accurately predict

drug gene associations and provide insights onto potential repositioning

cases.
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Chapter 1

Motivation

Why Drug

Repositioning?

Drug discovery is an expensive and time-consuming process with a low rate

of success. The average cost for launching a new drug into the market is

estimated to 1.8 billion dollars (Paul et al., 2010) and the traditional time

line until a drug is made available for use ranges from 10-17 years. In spite

of that, the drugs that make it to the market are very few. Notably, from

1999 to 2008, only 50 compounds were approved by the Food and Drug Ad-

ministration (FDA) in the U.S., out of which 17 were identified as arising

from target-based discovery methods (Hurle et al., 2013). For these rea-

sons, drug repositioning constitutes a popular alternative to conventional

drug research and development for the past few years. Drug repositioning,

meaning the task of finding new targets for old drugs, accelerates the pro-

cess of drug development, minimizes the associated costs, and, in parallel,

contributes to the prevention of noxious adverse events and toxicological

liabilities. Via drug repositioning, abandoned drugs come back to use and

successful drugs expand their therapeutic applications.

Information

”hidden” in

literature

Knowledge pertaining to drug gene associations is considered valuable and

can contribute to drug discovery and repositioning. Unravelling putative

associations between drugs and gene products can shed light onto the pro-

cesses of drug delivery and its effects, such as the changes in the cellu-

lar metabolism and the occurrence of unexpected adverse events. Such

information is scattered across the biomedical literature, the volume of

which has been increasing rapidly during the past years. Computational

methodologies and more specifically text mining can harness the data that

1
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is publicly available in biomedical articles. With the help of Information

Extraction (IE ) techniques facts and arguments pertaining to drugs and

gene products can be retrieved. Linking this textual evidence can lead to

the inference of indirect relationships between drugs and genes and hence

support computational drug repositioning.

The Swanson

hypothesis

Generally, the inference of implicit knowledge from seemingly unrelated

facts has been called Literature-Based Discovery (LBD) (Andronis et al.,

2011). Literature-Based Discovery was successfully applied for the first

time on drug discovery by Don R. Swanson in 1986. Swanson spotted two

apparently unrelated facts that were reported separately in literature and

then brought them together in the formulation of a hidden hypothesis. The

first refers to the beneficial properties of fish oil towards the reduction of

blood viscosity. The second refers to high blood viscosity as a symptom of

a peripheral circulatory disorder known as Raynauds’ Syndrome. Swanson

generated the hypothesis that fish oil may have a beneficial effect towards

the alleviation of Raynauds’ Syndrome. This hypothesis was later experi-

mentally validated by the work of DiGiacomo et al. (1989).

The

contribution of

ontologies

Consequently, Information Extraction techniques and automated Literature-

Based Discovery constitute valuable tools towards the establishment of hid-

den hypotheses between biomedical entities and can be utilized to form pu-

tative associations between drugs and genes. To establish such associations,

as an analogous process to Swanson’s ABC model, the use of intermediate

biomedical concepts becomes critical; two unrelated concepts A and C (i.e.,

fish oil and Raynaud’s Syndrome) are indirectly connected via a concept

B (i.e., blood viscosity). Such concepts are provided by biomedical ontolo-

gies. Ontologies are hierarchically structured terminologies that capture

and formally represent knowledge as a set of concepts within a domain. In

the case of the biomedical domain, ontologies have been extensively used

towards three major directions: the management of biomedical knowledge,

the integration of data and the decision support and reasoning over the con-

cepts that constitute the ontologies (Bodenreider, 2008). Hence, biomedical

ontologies can be applied in tandem with the ABC model towards the ex-

traction of implicit knowledge and more specifically towards the retrieval

of potential drug gene associations.
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1.1 Problem definition and proposed approach

Mine implicit

drug gene

associations

The open problem that this work aims to address is the automated extrac-

tion of putative drug gene associations from biomedical text, as a way to

boost computational drug repositioning. The current study proposes the

application of standardized text mining techniques and the integration of

biomedical ontologies towards the identification of drug gene associations.

We mine the vast volume of biomedical literature to construct corpus-based

profiles of ontological terms for both genes and drugs. These profiles are,

then in turn used, to quantify the degree of relatedness between a drug and

a gene and hence to establish putative drug gene associations.

Ontological

co-occurrence

based profiles

More specifically, we introduce CASSANDRA; an unsupervised algo-

rithm that predicts new drug gene associations solely by the systematic

co-occurrence analysis of the biomedical terms in all the scientific publica-

tions indexed by MEDLINE. MEDLINE is a freely available bibliographic

database which contains journal citations and abstracts for biomedical lit-

erature from around the world. The presented method identifies the co-

occurrences of ontological concepts with drugs and genes in MEDLINE

titles and abstracts. The ontological terms are obtained from two popular

ontologies of the biomedical domain, i.e., the Gene Ontology (GO) (Ash-

burner et al., 2000) and Medical Subject Headings 1 (MeSH ). CASSAN-

DRA utilizes this co-occurrence information to rank the most related GO

and MeSH concepts to the drug and the gene respectively. These concepts

form an individual profile for each drug and gene. Then, by quantifying

the statistical semantic relatedness between these profiles, the suggested al-

gorithm assesses and prioritizes the associations between drugs and genes.

Notably, the generated profiles can provide an insight into biomedical prop-

erties for drugs and genes and contribute to the inference of associations

that might not have been included in a database nor reported in the liter-

ature.

1http://www.nlm.nih.gov/mesh/
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Figure 1.1: Overview of CASSANDRA

The figure illustrates the major steps of CASSANDRA. The first step involves
the recognition of drug and gene names, MeSH Disease and GO terms in the
biomedical text. Then in Step 2, ontological profiles are assigned to drugs and
genes, based on the Pointwise Mutual Information (PMI ) between drugs/genes
and ontological terms. The third step involves the computation of the statistical
semantic similarity between the ontological profiles. Finally, all pairs of a drug
Dx and a target gene Tx are ranked based on the semantic similarity of their
profiles.

1.2 Thesis Outline

The following thesis is structured in five main sections. In Chapter 2 (Back-

ground) the introduction of the thesis follows. In this section, we discuss
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the advances and applications of LBD along with the use of terminologies

towards the establishment of indirect hypotheses and the elucidation of hid-

den relations between biomedical entities. Additionally, relevant method-

ologies and algorithms towards the prediction of drug gene associations are

presented and compared based on their main characteristics.

Chapter 3 (Materials and Methods) describes the materials, text mining

tools terminologies and mathematical formulas that CASSANDRA uti-

lizes for the automatic identification of putative drug gene associations from

biomedical text. Apart from the information regarding the generation of

ontological profiles for drugs and genes and the computation of the statisti-

cal semantic relatedness between drugs and genes, the chapter includes the

resources and steps that were utilized for the generation of the evaluation

datasets.

In Chapter 4 (Results) the co-occurrence statistics of drugs, genes, MeSH

Disease and GO terms in MEDLINE indexed abstracts and titles are pro-

vided. The generation of the datasets used for the algorithm’s evaluation

and their content is analytically described. This section, provides exten-

sively detailed results that assess the good performance of the algorithm

for both literature based and manually curated profiles when tested on all

provided evaluation datasets. The proposed measure of semantic related-

ness is compared against other traditional measures of semantic similarity.

The role of ontologies in the overall performance is also examined. Addi-

tionally, Chapter 4 includes case studies of 3 manually evaluated drug gene

associations proposed by CASSANDRA. Results regarding the potential

of the suggested methodology towards drug repositioning are also provided.

Chapter 5 (Discussion) discusses the major characteristics of the algorithm.

The role of several factors and decisions taken during the algorithm’s imple-

mentation are being analyzed. CASSANDRA is compared against other

relevant works in the field of automatic Literature- Based Discovery and

drug target interaction prediction.

The thesis is concluded in Chapter 6 (Conclusion) wherein the major con-

tributions of CASSANDRA are summarized. This chapter also reports

the limitations and future optimizations of the suggested algorithm towards

the prediction of drug gene associations.





Chapter 2

Background

In this work we introduce CASSANDRA; an algorithm for the automated

extraction of candidate drug gene associations from biomedical text on the

large scale. CASSANDRA focuses on Literature Based Discovery and

utilizes standardized text mining techniques and ontologies to infer drug

gene associations and contribute to computational drug repurposing. This

chapter discusses the studies and scientific background that motivated the

implementation of CASSANDRA. More specifically, the following ques-

tions are addressed

• What is drug repositioning? Why is computational polypharmacol-

ogy important?

• What is Literature Based Discovery LBD? Which are the major prin-

ciples and studies in the LBD domain?

– Which is the role and contribution of biomedical ontologies?

– Which are the main methodologies towards information extrac-

tion from biomedical text?

• What is the state of the art in the field of computational drug gene

association prediction?

7
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2.1 Drug Repositioning

What is Drug

Repositioning

The Research and Developement (R&D) of new drugs is a particularly

time consuming and costly process. Despite the imminent effort of this

task, few are the drugs that finally make it to the market. Polypharmacol-

ogy (or Drug Repositioning) has lately entered the picture of drug research

and development and has been considered the means to overcome the com-

plexity, delays or possible deadlocks of this tedious process. Polypharma-

cology focuses on drug molecules that interact with multiple targets (Reddy

and Zhang, 2013). The old dogma of the Magic Bullet (one drug one tar-

get) introduced by Paul Erlich has been replaced by the one drug multiple

targets philosophy of polypharmacology. In particular, drug repositioning

focuses on the identification of unknown targets for already existing drugs,

thus presenting an alternative means in drug research and developement.

Figure 1.1 demonstrates a comparison between conventional drug research

and development and drug repurposing (Ashburn and Thor, 2004).

Drug repositioning emerged as a new paradigm after the discovery of drugs

with multi-targeting activities that could have either a therapeutic or nox-

ious effect. Such cases are quite a few.

Expand uses of

successful

agents

Notably, the story of drug repositioning dates back almost 60 years. A very

old case is that of the drug Plaquenil. Plaquenil (Hydroxychloroquine) has

been used in the beginning of the 20th century as an antimalarial agent. In

1955, Plaquenil was approved by the U.S. Food and Drug Administration

(FDA 1) for the treatment of Lupus Erythematosus, a multicomplex au-

toimmune disease of unknown etiology. Due to its immunosuppressive, an-

tiinflammatory and antithrombotic properties, Plaquenil has become since

then the most commonly prescribed antimalarial medication for Lupus in

the U.S. (Fessler et al., 2005). Perhaps the most famous repositioning case

is that of the drug Sildenafil (Viagra). Sildenafil was initially synthesised as

an therapeutic agent against Erectile Dysfunction and was FDA-approved

in 1998. Nevertheless, the efficacy of Sildenafil in the treatment of Pul-

monary Arterial Hypertension (PAH ) led to the extension of its approved

application in 2005 (Richalet et al., 2005).

12
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Figure 2.1: Drug repositioning vs. conventional drug development

De novo drug discovery and development is a 10 to 17 year process with a
probability of success lower than 10%. Drug repositioning offers the possibility
of reduced time and risk as several phases common to de novo drug discovery and
development can be bypassed because repositioning candidates have frequently
been through several phases of development for their original indication (Ashburn
and Thor, 2004).

Bring old

drugs back to

life

Another interesting repositioning case is that of the drug Thalidomide.

Thalidomide entered the market on 1957 as a sedative drug and it was

used to alleviate morning sickness and nausea in pregnant women. How-

ever, the latter led to unprecedented ramifications. Worldwide, there were

around 10, 000 cases of children born with limb malformation and other

developmental defects which were attributed to Thalidomide’s use. There

has been a long study regarding the etiology behind the teratogenic effects

of Thalidomide. Finally, in 2010 it became known that Thalidomide targets

and inactivates the protein Cereblon (CRBN ) which is important for the

limb outgrowth and expression of the fibroblast growth factor Fgf8. (Ito

et al., 2010). Despite the unwanted effects, the antiinflammatory proper-

ties of Thalidomide made the drug re-emerge as a therapeutic agent against

Erythema Nodosum Leprosum (ENL). FDA approved the respective use of

the drug in 1998 and 8 years later, in 2006, granted Thalidomide as the

first-line medication in the treatment of a specific type of bone marrow
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cancer, i.e., Multiple Myeloma (MM ). Thalidomide was found to inhibit

adhesion of Multiple Myeloma to bone marrow stromal cells and thereby

decreases tumor cell growth, survival and drug resistance conferred by the

bone marrow milieu. (Breitkreutz and Anderson, 2008).

Unravel

unwanted

adverse events

However, there are cases wherein the one drug-multiple targets philosophy

has fired back, leading to serious toxicological liabilities and the subsequent

withdrawal of a drug from the market. Alatrofloxacin constitutes a rep-

resentative example; manufactured as a potent antibiotic, the drug was

found to cause severe liver toxicity, even of lethal outcome (Qureshi et al.,

2011). Fatal Rhabdomyolysis was the unwanted adverse event after the

administration of Cerivastatin. The drug was initially developed to pre-

vent Cardiovascular Disease by reducing the levels of cholesterol. However,

its use was followed up by the decomposition of damaged muscle tissue, a

condition known as Rhabdomyolysis (Psaty, Bruce M. et al., 2004).

The examples described above demonstrate the broad range of prospects

related to drug repurposing. Identifying unknown targets for existing drugs

can expand the therapeutic applications of the successful agents (e.g., the

cases of Plaquenil and Sidenadelfil), bring abandoned compounds back

to life (as in the case of Thalidomide) or unravel any unwanted adverse

events (such in the case of Alatrofloxacin and Cerivastatin). In parallel,

the benefits in the financial and timescale related demands of drug research

and development are evident, thus making drug repurposing a desirable

alternative.

However, a plausible question arises; how feasible is it to cover all possible

targets on an experimental full-scale level, and thus enable drug repurpos-

ing? This fact poses an significant limitation to polypharmacology and

that is exactly wherein the computational methods come into play. In

the following section, we discuss the progress and efforts in the domain of

computational polypharmacology.

2.1.1 Computational polypharmacology

As it has been mentioned above, drug repositioning poses an industry-wide

challenge towards the experimental identification of unknown drug targets
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and hidden drug functionalities. Current experimental approaches include

large scale -omic (genomic and proteomic) analyses, and siRNA screens.

The former examines the modifications in gene expression levels and the

post-translational products of genes to determine disease mechanisms and

drug responses (e.g., Kim et al. (2011)). The latter elucidates the role

of individual proteins (potential drug targets or off-targets) in the cell by

examining the impact that the silencing of their coding gene has on the

signal transduction (Jackson and Linsley, 2010). Although successfully

applied, the aforementioned approaches result in vast volumes of biomedical

information. Utilizing this information to enable drug discovery has, in

turn, posed a subsequent challenge in terms of time and complexity (Betz

et al., 2005). For that reason, computational methods that expedite drug

discovery have been in the spotlight lately.

Drug-Disease

methods

Although a new field of scientific interest, computational drug repurpos-

ing has been rapidly advancing and already counts several success stories.

Following two basic directions towards drug repurposing, the computa-

tional methods either harness disease/phenotypic similarities and result in

novel drug disease relations or take a leap further to identify the exact

unknown targets of a drug. A representative example of the former is

the Connectivity Map (Lamb et al., 2006). The Connectivity Map con-

stitutes a reference collection of gene expression profiles for 164 bioactive

small molecules (perturbagens) on four human cancer cells lines. Given a

gene signature query, the system uses pattern-matching algorithms to re-

turn a ranked list of strongly correlated to weakly correlated gene profiles

and hence, perturbagens. Drug molecules correspond to a gene expression

state and whether the gene signature query constitutes a drug or a disease

related phenotype, drug-drug or drug-disease relations can be suggested.

Sirota et al. (2011) expanded the application of the Connectivity Map and

included in their study gene expression profiles for 100 diseases. Based on

the hypothesis that a drug with a gene expression signature opposite to

that of a disease can be a therapeutic alternative towards the respective

disease, they systematically computed the negative similarity between drug

and disease gene expression profiles. Altogether, they resulted in individual

therapeutic predictions for 53 diseases. Most importantly, the aforemen-

tioned study resulted in the successful computational repurposing of the

anticonvulsant drug Topimarate to Inflammatory Bowel Disease (Dudley
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et al., 2011a). Experimental validation in rodents showed that Topiramate

significantly reduced gross pathological signs and microscopic damage in

primary affected colon tissue which constitute manifestations of the In-

flammatory Bowel Disease. In a recent study, Jin et al. (2014) modified

the scoring scheme of Connectivity Map and experimentally evaluated their

predictions synergistic activity of the drugs Trolox C and Cytisine for the

treatment of Diabetes, Type 2.

Drug-Target

methods

Emphasizing on target identification, Keiser et al. (2007) classified tar-

get proteins based on the set-wise chemical similarity among their ligands.

Given a drug query, the Similarity Ensemble Approach that they intro-

duced suggests these target proteins whose known ligands share common

chemical features with the respective drug. This approach, led to the find-

ing that the drug Methadone, apart from an µ-opioid receptor modulator,

is also a potent antagonist of the M3 muscarinic receptor. This finding was

also experimentally validated. Campillos et al. (2008) computationally ap-

plied the hypothesis that drugs causing the same adverse events may share

the same off-targets. The authors built a network of 1, 018 side effect-based

drug-drug connections and experimentally confirmed 13 nover drug-target

interactions. In a following study, Lounkine and colleagues introduced a

conversed approach and used target protein predictions to associate drugs

with unintended adverse events (Lounkine et al., 2012). They focused on a

set 656 marketed drugs and 73 targets with experimentally established as-

sociations to certain adverse events. Via the Similarity Ensemble Approach,

they calculated the drug-target similarity and then they assigned novel side

effects to drugs. Their work resulted in the experimental validation of 125

novel drug-target interactions.

The studies described above suggest the efficient contribution of computa-

tional methods to polypharmacology and particularly drug repositioning.

Their successful application to drug discovery has triggered a plethora of

following up studies that span accross different data types (structural, tex-

tual or transcriptional/genomic data) (Hurle et al., 2013) and combine

different strategies, e.g., networks, text mining, machine learning (Dud-

ley et al., 2011b). As the biomedical data grows, the necessity for such

methodologies grows, as well.
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2.2 Literature Based Discovery in the

Biomedical Domain

Literature Based Discovery has been defined as the process of (semi)-

automatic inference of implicit knowledge out of literature (Weeber et al.,

2005). The first and most indicative paradigm of literature-based hypoth-

esis was introduced by Don R. Swanson in 1986 (Swanson, 1986) (Figure

2.2).

Figure 2.2: The Swanson Hypothesis

“Beneficial effect of fish oil on 

blood viscosity in peripheral 

vascular disease”  

[Woodcock et al., 1984] 

 

Fish oil 

Blood viscosity 

“…blood was studied in 20 

patients with Raynaud 

syndrome… studies 

demonstrate increased blood 

viscosity …” 

 [Tietjen et al., 1975] 

Raynaud’s 

syndrome 

Blood viscosity 

Blood viscosity 

HYPOTHESIS 

Fish oil treats Raynaud’s Syndrome 

[Swanson, 1986] 
 

 

 

 

CONFIRMATION 

Clinical study by DiGiacomo et al. (1989) 

The figure illustrates the first successful application of the ABC model. Two
seemingly unrelated facts form the hypothesis that fish oil is a treatment al-
ternative to Raynaud’s Syndrome. The hypothesis was initially established by
Swanson (1986) and DiGiacomo et al. provided the experimental validation 3
years later.

The Swanson

Hypothesis

Swanson spotted two independent reported facts in literature that, nev-

ertheless, shared one common factor; blood viscosity. The former refers to
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Raynaud’s Syndrome, a circulatory disorder which exhibits excessively re-

duced blood flow to fingers and toes, and hence results in increased blood

viscosity (Tietjen et al., 1975). The latter reports that Dietary Fish Oil

appears to lower blood viscosity (Woodcock et al., 1984). Observing that

Raynaud’s Syndrome and Dietary Fish Oil had never been reported to-

gether in literature before, Swanson connected these two assertions and

formed the hypothesis that Dietary Fish Oil may have a beneficial effect

on Raynaud’s Syndrome. Indeed, this hypothesis was afterwards exper-

imentally validated by DiGiacomo et al. (1989). On the same fashion,

Swanson along with his colleague Smalheiser furtherly exploited the mutu-

ally isolated literatures and postulated several other hypotheses (Swanson,

1990; Swanson and Smalheiser, 1996, 1998). In one of them, they sug-

gested the therapeutic effects of Magnesium in Migraine (Swanson, 1988).

Although, this hypothesis has not been experimentally confirmed, empiri-

cal treatment of Migraine patients with Magnesium has shown promising

results (Mauskop and Varughese, 2012).

ABC model -

definition

Establishing indirect associations between two concepts A and C via an

intermediate concept B has been refered to either as the Swanson Hy-

pothesis or the ABC model. The ABC model has been repeatedly used

to discover hidden associations in the biomedical domain. The developed

methodologies are either used to recover the original hypotheses proposed

by Swanson (Cameron et al., 2013; Cohen et al., 2010a; Srinivasan, 2004;

Weeber et al., 2001), or they take a step further and establish new hypothe-

ses (Gramatica et al., 2014; Dong et al., 2014; Baker and Hemminger, 2010;

Ahlers et al., 2007; Srinivasan and Libbus, 2004; Wren et al., 2004; Weeber

et al., 2003). Weeber et al. (2005) elaborated further on the ABC model

and discriminated the Literature Based Discovery methods into closed and

open discovery methods. As shown in Figure 2.3 the open model, the con-

cepts A and C are given and the hypothesis of A’s connection to C has

to be established by the identification of intermediate concepts B. On the

other hand, the closed model focuses on the concept A and using this as a

starting point browses the intermediate concepts B that indirectly connect

it to various final concepts C.

ABC model -

tools and

algorithms

Several algorithms and automated tools have adopted the ABC model

to assist Literature Based Discovery in the biomedical domain (see Table

2.1). Smalheiser and Swanson were the first to provide ARROWSMITH, a
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Figure 2.3: The open and closed ABC model

The two representations of ABC model. (A) Closed discovery model: the con-
cepts A and B share an implicit connection if they are explicitly associated to
a common concept B. (B)Open discovery model: Concept A is indirectly con-
nected to several concepts C via a set of intermediate concepts B. Figure as in
Andronis et al. (2011).

closed discovery automated system (Smalheiser and Swanson, 1998). Us-

ing only the titles from the MEDLINE indexed articles and for two given

concepts A and C, ARROWSMITH retrieves the article sets pertaining to

A and B respectively and generates a set of intermediate terms B (i.e.,

words/phrases) that are found to overlap in these article sets. FACTA+

also utilizes MEDLINE and uses open discovery to retrieve indirect asso-

ciations between drugs, diseases, chemical compounds and proteins/genes

(Tsuruoka et al., 2011); the system accepts a set of keywords as a query

input and returns all possible directly associated concepts. It then uses

these so-called pivot concepts as intermediates and retrieves the directly

associated to them target concepts. The query can be either a single term

or a biomolecular event, whilst the query-pivot and pivot-target concept

relations are suggested based on co-occurrence statistics. Quite similar to

FACTA+ is the CoPub Discovery system (Frijters et al., 2010) which is

also based on co-occurrence statistics. CoPub Discovery supports both
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closed and open discovery between drugs, genes and diseases with the use

of biological processes, pathways and genes as the intermediate concepts.

Another automated tool supporting both open and closed discovery is

BITOLA (Hristovski et al., 2005). BITOLA uses a two step establishment

of indirect relationships between disease terms and genes. First, it estab-

lishes associations between diseases or genes and Medical Subject Headings

(MeSH ) 3 descriptors based on co-occurrence statistics. The higher the

number of MeSH descriptors connecting the disease term and the gene,

the stronger the implicit association between them. MeSH is a controlled

vocabulary created for indexing articles in the life sciences, whilst theMeSH

descriptors are the MeSH terms that are assigned to MEDLINE indexed

articles through manual curations. Such terms are used in the method-

ology of Baker and Hemminger (2010) wherein indirect associations are

established between fixed chemicals and disease terms via proteins.

Although, the majority of ABC model methodologies uses co-occurrence

statistics, there are a few methods that use Natural Language Processing

techniques to establish relationships between a concept A or C with an

intermediate concept B (Cairelli et al., 2013; Cohen et al., 2012, 2010a;

Hristovski et al., 2008). Table 2.1 provides an overview of the most distinc-

tive tools implemented for Literature Based Discovery. As shown, most of

the tools utilize MEDLINE, but few of them deviate from the traditional

ABC model. The majority remains to the hypothesis retrieval without ap-

plying any further refinement. Additionally, although ontologies constitute

useful resources of terms for the hypothesis establishment, these are not ex-

tensively used. The tools consider rather their own specified terminologies,

as in the case of CoPub Discovery for example.

The seminal ABC model goes beyond literature applications. Observing

things from a more general perspective, several works in the domain of

life sciences have generated hypotheses based on the implicit connections

between two entities. For example, Campillos et al. (2008) use side effects

as the intermediate concepts to relate drugs to targets. The Connectivity

Map can be also considered an expansion of the ABC model (Lamb et al.,

2006); the gene expression profiles are connecting two drugs or a drug with

a disease. WENDI is another tool that concentrates data from various

3http://www.nlm.nih.gov/mesh/
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biomedical repositories and uses this data to indirectly associate drugs

with genes and diseases (Zhu et al., 2010).

Text mining

and ontologies

for ABC

model

Apparently, two are the prerequisites when applying the ABC model on

the biomedical literature. The former is a set of terms/entities found in

text and the latter is to establish pairwise relations between them. Hence,

the arising questions are; which are the terms that are important for Lit-

erature Based Discovery in the biomedical domain? How can we extract

these terms an any existing pairwise relations between them? On the one

hand, there is the necessity for established dictionaries and structured ter-

minologies (ontologies) indexing the biomedical literature. On the other

hand, there is the necessity for text mining tools that are able to success-

fully spot the references of such terms in text and retrieve the relations

between them.

2.3 Biomedical Ontologies

Definition
In computer science, an ontology is defined as the technique used to rep-

resent and disseminate knowledge about a specific domain by modeling

the elements in that domain and the relationships between them (Gruber,

1991; Bodenreider and Stevens, 2006). According to Maojo et al. (2011),

ontologies involve: (a) modelling primitives that include objects, classes

or categories (e.g., cells, organs, persons), (b) semantic relationships be-

tween these primitives (e.g., kidney is part of human body), (c) properties

pertaining to each class (descriptive or functional).

The role of

biomedical

ontologies -

Indexing

Bodenreider (2008) classified the role of ontologies into three major cate-

gories. The first is the knowledge management, such as indexing and infor-

mation retrieval. For example, Medical Subject Headings (MeSH ) are used

to index the MEDLINE articles. Shah et al. (2009a) implement a proto-

type system for the automated annotation and indexing of gene-expression

data sets, image descriptions, clinical trial reports and MEDLINE indexed

abstracts with concepts from the appropriate ontologies. SemRep extracts

semantic predications (subject-predicate-object triples) from text based on

UMLS (Unified Medical Language System) concepts, (Rindflesch and Fisz-

man, 2003).
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Data

Integration

The second role is to integrate (heterogeneous) data and disseminate it.

A prerequisite for that is, of course, semantic interoperability. Gene On-

tology (GO) is such a resource (Ashburner et al., 2000). GO is a popular

and publicly available controlled vocabulary that concentrates information

regarding genes, gene products and their attributes. Its major goal is to

unify the genes’ representation across databases and provides tools that al-

low easy access to the GO data and annotations. Apart from gene annno-

tation, GO has also been used to structure MEDLINE indexed articles

and abstracts by the semantic knowledge-based search engine GoPubMed

(Doms and Schroeder, 2005).

Reasoning
The third role of ontologies is to assist decision support and automated

reasoning. Blonde et al. (2011) performed a semi-automated approach to

reason over different ontologies and managed to infer 158 million previ-

ously hidden knowledge statements. The Systematized Nomenclature of

Medicine-Clinical Terms (SNOMED CT ) 4 is a formalized comprehensive

terminology for the Electronic Health Record (EHR). Its formal model has

allowed reasoning services to derive implicit relations (subsumptions) from

the ones explicitly represented by automatically computing the axioms re-

sponsible for these relations (Baader and Suntisrivaraporn, 2008). In the

same context, Magka et al. (2014) implement a reasoning algorithm that

significantly speeds up the automated classification of the chemical com-

pounds included in the ChEBI (Chemical Entities of Biological Interest)

ontology and contribute to the ontology’s curation by identifying missing

and contradictory subsumptions.

Connect

biomedical

entities via

ontologies

Ontologies have been also used as means to establish or unravel relations

between biomedical terms and hence to assist information extraction. Srini-

vasan and Libbus (2004) were among the first to use the MeSH terms that

indexMEDLINE articles to establish topic profiles and generate hypotheses

similar to the Swanson example. Several methodologies have since then ex-

ploited profiles ofMeSH terms to interrelate biomedical entities (Baker and

Hemminger, 2010; Cheung et al., 2012, 2013; Dong et al., 2014). BioMine

collects data from several biomedical knowledge bases and, among others,

utilizes GO terms towards link prediction in a large network of biomedical

entities (Eronen and Toivonen, 2012). Schlicker et al. (2010) made a step

4http://www.ihtsdo.org/snomed-ct/snomed-ct0/
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further and prioritized disease-gene pairs based on the similarity of their

GO profiles. Plake (2010) apply an elementary version of the same idea

to relate drugs and genes. Sevelar studies have used phenotypic terminolo-

gies on that respect, as well (Oellrich et al., 2014; Smedley et al., 2013;

Washington et al., 2009). To extract drug target information, Hoehndorf

et al. (2013) compute the similarity between mouse model and drug-induced

phenotypes with the use of Mammalian Phenotype Ontology (MP) (Smith

et al., 2004) and the Human Phenotype Ontology (HPO) (Robinson et al.,

2008).

Semantic

similarity

metrics

As shown above, the relationships between biomedical entities (e.g., pro-

teins or diseases and genes) can be established via the same or similar

ontological concepts. Hence, a variety of metrics has been implemented to

assess the semantic similarity (relatedness) between two ontological con-

cepts. Pesquita et al. (2009) classify these metrics in two basic categories;

the edge-based and the node-based approaches. Edge-based approaches

mainly consider the similarity of two ontological terms as a function of the

distance between them in the ontology (Wu and Palmer, 1994; Leacock

et al., 1998); the shortest the path that connects the two terms via their

Least Common Ancestor (LCA), the higher their similarity. Node-based

approaches apart from hierarchical information also compare certain prop-

erties of the ontological terms, such as their Information Content (IC ) on

an specific corpus (Resnik, 1995; Jiang and Conrath, 1997; Lin, 1998; Couto

et al., 2005; Pesquita et al., 2008).

Several approaches have explicitly focused on GO. Wang et al. (2007) pro-

pose an edge-based similarity metric that considers the semantic contribu-

tion of each edge type (is part of or is a). Jain and Bader (2010) use the

number of a node’s descendants to formulate the topological Information

Content and cluster relative GO terms; terms that belong to the same

subset are assigned a higher similarity score. Yang et al. (2012) explore

the hierarchy beneath the GO terms and model the uncertainty of the

nodes based on gene annotation information to improve existing measures

of semantic similarity.

The ontologies mentioned above constitute only some popular examples.

Currently, there is a variety of biomedical ontologies covering certain sec-

tors of knowledge at different levels of specificity. For example, there are
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ontologies dedicated to a specific disease (e.g., the Cardiovascular Disease

Ontology or CVDO (Barton et al., 2014)), a specific type of cells (e.g.,

Beta Cells Genomic Ontology or BCGO (Zheng et al., 2013)) or a certain

organism (e.g., Xenopus Anatomy and Development or XAO (Segerdell

et al., 2013)). Several initiatives towards the formulation of a common set

of principles for different ontologies also exist, such as the Open Biomedi-

cal Ontologies (OBO) consortium (Smith et al., 2007). As the amount of

data produced in biology exponentially increases due to the advent of the

genomic era and the high-throughput techniques developed in sequencing,

drug and phenotypic screening, the role of ontologies becomes more and

more significant (Hoehndorf et al., 2012).

2.4 Mining biomedical text

Deciding which biomedical terms/ontological concepts to annotate in text

constitutes only the first step towards the extraction of information in the

biomedical domain. The successful identification of these very terms and

the extraction of any of their relationships reported in text are the fol-

lowing and particularly demanding steps. Given the exponential growth

of biomedical literature (Hunter and Cohen, 2006), the automation of this

process is itself a significant challenge. Accordingly, traditional biomedical

text mining systems usually consist of two modules; the former recognizes

biological entities or concepts in text and the latter focuses on the extrac-

tion of any relations existing between these entities (Zweigenbaum et al.,

2007).

Abstracts and

full-text

With regards to the biomedical text that constitutes the input of text

mining systems, scientific abstracts and titles are widely used mainly due

to their public accessibility through PubMed 5 (i.e., an interface to browse

the MEDLINE database of indexed articles in life sciences) (Vincze et al.,

2008). It has been also demonstrated that text mining tools perform bet-

ter in abstracts than in full-text articles (Cohen et al., 2010b). Gijón-

Correas et al. (2014) predict the relatedness of a list of chemicals retrieved

from MEDLINE indexed abstracts and titles to a query topic. GoPubMed

5http://www.ncbi.nlm.nih.gov/pubmed
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(Doms and Schroeder, 2005) and PubTator (Wei et al., 2013) are web-

tools that allow users to retrieve articles associated with specific biocon-

cepts based on their MEDLINE abstracts. LitInspector performs signal

transduction pathway mining again from MEDLINE abstracts. PolySearch

combines abstracts and database factoids to unravel biomedical relations

(Cheng et al., 2008) Nevertheless, there exist methodologies that investigate

the extraction of biomedical information from full-text articles. In a recent

work, Névéol et al. (2012) propose the use of text mining on full-text arti-

cles to tackle the automatic curation of links between biological databases

and the literature. Pharmspresso automatically extracts pharmacogenomic

facts from full text articles (Garten and Altman, 2009). Hakenberg et al.

(2010) focus on protein-protein interaction extraction from full-text arti-

cles. GeneView is a semantic search engine built upon a comprehensively

annotated version of MEDLINE abstracts and openly available full-text

articles (Thomas et al., 2012).

2.4.1 Annotation of Biomedical Terms

Term

categories and

approaches

The identification of terms in biomedical text is an active field of study.

There exist a variety of Name Entity Recognition tools often addressing spe-

cific terms categories. The most popular term category is that of genes/pro-

tein names (Campos et al., 2013; Fontaine et al., 2011; Torii et al., 2009;

Hakenberg et al., 2008a; Settles, 2005). There are also species/organism de-

tection methodologies like LINNAEUS (Gerner et al., 2010) which are com-

monly used together with gene/protein name annotators to alleviate the

high inter-species ambiguity that characterizes gene names. Other Named

Entity Recognition tools identify protein mutations (Burger et al., 2014;

Winnenburg et al., 2009; Caporaso et al., 2007) or disease names (Leaman

et al., 2013). Lately, there has been an effort to tackle annotation of text

with chemical names (Rocktäschel et al., 2012; Jessop et al., 2011). Tools

and strategies have been also applied towards the annotation of ontologi-

cal terms in text (Aronson and Lang, 2010; Shah et al., 2009b; Doms and

Schroeder, 2005). Name Entity Recognition tools usually follow dictionary

based matching approaches combined with machine learning components

(Huang et al., 2011; Wermter et al., 2009). In some cases only machine
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learning (Leaman et al., 2013) or rule-based approaches are used (Kang

et al., 2012).

Challenges
Each term category entails its own challenges in the process of Name Entity

Recognition. For example, gene/protein names are characterized by ambi-

guity not only across species but also within species, with common English

words and with medical sublanguage terms (Wermter et al., 2009). Apart

from overlapping with gene names, disease names are frequently abbrevi-

ated when mentioned in text (Leaman et al., 2013). The case of chemical

name regognition poses an even greater challenge due to the highly hetero-

geneous and various ways of naming them (e.g., chemicals can be referred

to by their IUPAC (International Union of Pure and Applied Chemistry)
6 or brand name) (Rocktäschel et al., 2012). The recognition of concepts

(ontological terms) in text involves an additional complication, since there

is often a disconnect between what is captured in an ontology and what is

found to be explicitly stated in text (Funk et al., 2014).

2.4.2 Relation Extraction

Types of

relations

After the identification of biomedical entities in text, the establishment of

the relations between them follows. Several methodologies are developed

to target usually one type of relations. For example, there are approaches

focusing in the retrieval of protein protein interactions (Hakenberg et al.,

2010; Jelier et al., 2005; Cohen et al., 2005), or point protein mutations

related to a specific disease (Burger et al., 2014; Doughty et al., 2011).

Other studies focus on gene-phenotype (Paik et al., 2014), drug-disease

(Cheung et al., 2013), disease-phenotype (Xu et al., 2013) or protein-ligand

associations (Chang et al., 2012).

Co-occurrence

Towards the establishment of relations between biomedical entities, there

are two basic approaches. The former is to retrieve relations based on

the terms co-occurrence statistics. This method builds on the assumption

that two entities found together in the same abstract or sentence/phrase

are likely to be related. In an early study, Jenssen et al. (2001) build a

gene-gene relationship network by weighting the co-occurrences of gene-

gene pairs in MEDLINE abstracts. Garten et al. (2010) learn drug-gene

6http://www.iupac.org/
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associations from a co-occurrence based network of drugs and genes also

built from MEDLINE abstracts. Paik et al. (2014) extract disease co-

occurrences from medical reports and show that there is a correlation be-

tween disease comorbidity and overlaping disease-related protein-protein

interactions. FACTA+, Pescador, Pharmspresso and GoGene are just

a few examples of tools that generate biomedical relations based on co-

occurrence data (Tsuruoka et al., 2011; Barbosa-Silva et al., 2011; Garten

and Altman, 2009; Plake et al., 2009).

Patterns/rules
The latter method to extract biomedical relations from text is to ap-

ply predefined or automatically generated patterns/rules. AutoBind is a

pattern-based method for the automated extraction of protein-ligand asso-

ciations (Chang et al., 2012). RelEx and OpenDMAP apply rules on de-

pendency parse trees to extract protein-protein interactions (Hunter et al.,

2008; Fundel et al., 2007). Cou (2010) also use dependency graph rules to

detect pharmacogenomic relations. EventMine learn predicate-argument

structures to extract biomolecular events from text (Miwa et al., 2012).

SemRep extracts semantic predications (subject-predicate-object triples)

from text between UMLS concepts (Rindflesch and Fiszman, 2003).

Pros & cons
Evidently, these strategies are extensively applied in relation extraction

and consequently, in Literature Based Discovery (see Table 2.1). However,

co-occurrence based statistics tend to be slightly more popular compared

to the pattern based strategies. This has several explanations. Unlike syn-

tactic patterns, co-occurrence based statistics are relatively easier to im-

plement and can be applied on the large scale without text pre-processing

requirements (Zweigenbaum et al., 2007). Additionally, they are domain-

independent. For example, it is impossible to use the same syntactic pat-

terns to retrieve a drug-disease relationship and a protein-protein interac-

tion. However, that very specificity of pattern-based approaches provide

the user with the exact type of relation between the entities and thus

opt for high precision. Ideally, the two methodologies combined produce

high quality results. Xu and Wang (2014) learn syntactic patterns over

automatically recovered occurrences of known drug-side effect pairs from

literature. In an earlier study Bunescu et al. (2006) use both strategies to

recover protein-protein interactions from text. Table 2.2 summarizes the

advantages and disadvantages of each approach.
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Table 2.2: Co-occurrence vs. Patterns

Co-occurrences Patterns/Rules

Fast Type of relation
Pros High recall High precision

Straightforward implementation

Text-preprocessing
No relation type Domain-dependent

Cons Low precision Low recall
Laborious generation

The table reports the advantages and disadvantages of co-occurrence based and
pattern-based relation extraction.

2.5 Drug gene association prediction

To assist computational drug repurposing, many methodologies have been

established towards the prediction of target proteins for drugs. Popular

strategies involve the use of side effect similarity (Campillos et al., 2008),

chemical structural similarity (Keiser et al., 2007) and protein structural

similarity (Kinnings et al., 2009) for the identification of drug repositioning

candidates. Other methodologies apply large scale molecular docking anal-

ysis of known drugs against known targets to identify off-target proteins

with novel scaffolds or proteins structurally dissimilar to known targets (Li

et al., 2011).

Type of data
Lately, many studies combine chemical structural and protein sequence

similarity to predict drug target interactions (van Laarhoven and Mar-

chiori, 2013; Mei et al., 2013; Fakhraei et al., 2013; Perlman et al., 2011;

Bleakley and Yamanishi, 2009). Towards the same direction, several works

use on top of that pharmacological effects similarity (e.g., side or therapeu-

tic indication), as well (Kim et al., 2013a; Yu et al., 2012; Yamanishi et al.,

2010). Notably, Takarabe et al. (2012) show that the use of pharmaco-

logical effects similarity of drugs in tandem with the genomic similarity of

targets in a pairwise kernel regression model achieves a better performance

than the use of chemical similarity and genomic similarity combined.
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Protein-protein interactions (PPI) networks have also come to play. Hansen

et al. (2009) rank human genes to a query drug by building on a local

network of known interactions and learning on the similarity of the query

drug (by both structure and indication) with drugs that interact with gene

products in the local network. Emig et al. (2013) combine a PPI network

with disease microarray data and learn both global and local features to

rank a disease signature against a set of drug targets.

Few

unsupervised

methods

Generally, there are very few unsupervised methods towards the prediction

of drug-gene associations. Chen et al. (2012) build a network of so-called

semantically linked entities to drugs based on publicly available repositories

which comprise drug-related information (i.e., pathway, side effect, disease

data). Based on the topology and semantics of the neighborhood, they

build a statistical model to infer drug-gene associations (edges) in the net-

work. Of course, this method depends on the information completeness of

the network; the more information (links) is known for a drug, the better

is the ability of the method to successfully predict its target. Wu et al.

(2012) harness the biomedical literature. They annotate drugs and genes

on a subset of MEDLINE abstracts and examine the performance of the

Latent Dirichlet Allocation towards the ranking of drug-gene associations

on different levels of co-occurrence.

Supervised

bipartite graph

methods

On the other hand, the supervised techniques for the prediction of drug-

gene associations are numerous (Alaimo et al., 2013; Chen and Zhang, 2013;

Mei et al., 2013; Yu et al., 2012; Perlman et al., 2011; Yamanishi et al.,

2010). The majority of them views the set of drug target interactions as a

bipartite graph, i.e., a graph where edges are only allowed to pass between

one class of nodes (drugs) and the other (targets). Bleakley and Yamanishi

(2009) were the first to use such a representation to predict drug-target

interactions (edges in the bipartite graph) via learned local models from

chemical and genomic data. In the same context, Fakhraei et al. (2013) and

Gönen (2012) train a probalistic model to predict edges on the bipartite

drug-target interaction (DTI) network.

Laarhoven et al. (2011) construct gaussian kernel functions from binary

interaction profile vectors for drugs and targets and show that the topology

of the bipartite DTI network is on its own a substantial source for predicting

drug-target interactions. Cheng et al. (2012a) also learn the topological
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DTI network similarity and demonstrate that Network Based Inference

performs better than Drug or Target based Inference towards the prediction

of new targets for known drugs. The latter is a limitation of the two

aforementioned approaches; when a drug lacks known target information,

it is not possible to predict new targets.

Other supervised methodologies apply the Nearest Neighbor algorithm to

predict new targets for drugs of unknown interaction information (van

Laarhoven and Marchiori, 2013; He et al., 2010). Wang and Zeng (2013)

train a two-layer graphical model to predict the type of interaction between

a drug and a target. Kim et al. (2013a) demonstrate that drug-drug inter-

action data is a contributing feature towards the prediction of drug-target

interactions. Gao et al. (2013) assign drugs to target groups based on the

associations of their ontogogical ChEBI terms. Other works learn from

chemogenomic and structural activity features (Cheng et al., 2012b).

Literature

features

unexplored

Notably, literature-based methods are limited. Zhu et al. (2005) learn from

gene-gene, compound-compound and gene-compound co-occurrence data

in MEDLINE abstracts and detect implicit gene-compound associations.

Garten et al. (2010) replaced the drug-gene network in Hansen et al. (2009)

by a gene-drug network derived from the sentence level co-occurrence of

drugs and genes in full-text articles. They show that the logistic regression

classifier trained on this network is as good as (and sometimes better than)

the one trained on the network built from manually curated knowledge

bases (i.e., the case in Hansen et al. (2009)). Plake (2010) presents an

early stage approach that relates drugs to genes via concepts derived from

MEDLINE. However, this work suffers from rudimentary evaluation; there

is no filtering of the concepts applied when establishing drug gene relations

and the dataset used for the evaluation fails to demonstrate the real efficacy

of the proposed method. Still, this work motivates the use of literature

towards drug gene association prediction.

To conclude, few are the literature based approaches towards the prediction

of drug gene associations. Moreover, the majority follows machine learning

techniques that integrate features from highly diverse data; chemical struc-

tures, target aminoacid sequences, pharmacogenomic or chemogenomic in-

formation, protein-protein interaction data or even disease microarray data
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(e.g., as in Emig et al. (2013)). Additionally, quite some of them are lim-

ited to predictions that consist of known targeted drugs and druggable

proteins (e.g., Laarhoven et al. (2011); Alaimo et al. (2013)). Table 2.3

provides the respective overview. In a recent study, Pahikkala et al. (2014)

revise the supervised methods towards drug-target interaction prediction

and pinpoint the drawbacks. Among others, they state that these models

are often being constructed and evaluated under overly simplified settings

that do not reflect the real-life problem in practical applications.
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Chapter 3

Materials and Methods

CASSANDRA utilizes the biomedical literature to identify latent rela-

tions between drugs and genes by creating their ontological profiles and

measuring their relatedness. This chapter reports the materials, text min-

ing methods and mathematical formulas that were utilized to implement

and evaluate CASSANDRA’s efficacy.

Regarding the implementation, the following questions are answered

• Which text is annotated? Which terms are searched in text?

• Which annotators are utilized for the recognition of terms in text?

• How are the drug and gene profiles generated?

• How is the semantic relatedness between the profiles estimated?

With respect to the algorithm’s evaluation:

• Which datasets are used?

• How are these datasets generated?

• Which alternative metrics of semantic similarity are compared against

the semantic relatedness metric utilized by CASSANDRA?

31
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3.1 Materials and Methods - Implementa-

tion

3.1.1 Resources - Text and terms

Biomedical text

CASSANDRA mines the abstracts and titles of MEDLINE indexed ar-

ticles to establish latent drug gene associations. The MEDLINE database

is a freely available bibliographic repository which contains journal cita-

tions, abstracts and full-body articles of biomedical literature from around

the world. Currently, MEDLINE comprises around 24 million records.

However, only ∼ 2% of MEDLINE entries have open-access full-text ar-

ticles available for text mining (Thomas et al., 2012). For that reason,

CASSANDRA utilizes only the abstracts and titles of approximately 23

million biomedical articles that were available at the time of the algorithm’s

implementation (March 2013).

Biomedical terms

CASSANDRA searches for hidden indirect associations between drugs

and genes. Each drug and each gene are assigned an ontological profile that

consists of terms derived from Gene Ontology (GO) and Medical Subject

Headings Diseases (MeSH Diseases).

Drugs from

DrugBank

As far as the drug terms are concerned, CASSANDRA utilizes an in-

house dictionary of drugs derived from the DrugBank database (Wishart

et al., 2008). The DrugBank database is both a bioinformatics and chem-

informatics resource which combines detailed data descriptions and com-

prehensive target information for an extensive list of drugs. The database

currently contains over 7, 000 drug entries. Experimental drugs occupy

around 70% of the database. DrugBank also includes small molecule and

biotech (protein/peptide) drugs that are approved by the U.S. Food and

Drug Administration (FDA). Each drug record (DrugCard) contains more
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than 200 data fields with half of the information being devoted to drug/-

chemical data and the other half devoted to drug target or protein data

(enzymes, transporters, carriers).

Genes from

UniProtKB

Regarding the gene names, these are derived from UniProt Knowledgebase

(UniProtKB) 1. UniProtKB constitutes a central protein resource. It cap-

tures the core data of a protein (i.e., the amino acid sequence, protein name

or description, taxonomic data and citation information) and any annota-

tion information available, such as ontological terms, cross-references and

classifications. UniProtKB consists of UniProtKB/TrEMBL and UniPro-

tKB/SwissProt. The former contains unreviewed, automatically annotated

records. The latter, i.e., UniProtKB/SwissProt, contains manually curated

records and is utilized by CASSANDRA.

Gene Ontology
As far as the ontologies are concerned, GO 2 and MeSH 3 constitute the

terms that form the profiles and are used towards the characterization of

drugs and genes. GO is the major and freely available controlled vocab-

ulary of genes and gene products (Ashburner et al., 2000). GO explicitly

focuses on the unification of genes’s representation across all species (Con-

sortium, 2008). GO is a dynamic ontology that is maintained and enriched

regularly. It consists of three subontologies; Biological Process, Molecular

Function and Cellular Component. GO is structured as a Direct Acyclic

Graph, meaning a graph with no directed cycles. Each term has defined

relationships with other terms in GO.

MeSH
Medical Subject Headings (MeSH ) is a popular medical controlled vocab-

ulary thesaurus. It is freely available and maintained by the U.S. National

Library of Medicine (NLM ). MeSH consists of sets of terms (categories)

that are hierarchically structured. It is primarily used for indexing MED-

LINE articles and it is continually maintained. CASSANDRA focuses

on the Disease terms (descriptors) to characterize genes and drugs. Only

MeSH Disease terms found in text are used. MeSH terms provided by

MEDLINE are ignored so that CASSANDRA remains independent of

any manual annotation and hence generally applicable.

1http://www.uniprot.org/
2http://geneontology.org/
3http://www.nlm.nih.gov/mesh/
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3.1.2 Recognition of terms in text

The recognition of terms in text involves the identification of drug names

and their synonyms, gene names and GO and MeSH terms. The recogni-

tion of genes and drugs in biomedical text is analytically described in Plake

(2010). For the sake of coherence, the details of the annotation process are

once more explained.

Gene

annotation

Regarding the gene annotation process, GNAT was utilized (Hakenberg

et al., 2008a). GNAT is a publicly available system that handles inter-

species gene mention normalisation. Unlike traditional gene annotators,

GNAT uses background knowledge on genes to assign ambiguous gene

names to the correct Entrez Gene identifiers with a reported F - measure of

81.4% (90.8% precision at 73.8% recall). On the single species task consid-

ering only human genes, GNAT achieved an F -measure of 85.4%. Briefly,

gene annotation with GNAT is divided in four stages. First, it searches for

different species mentioned in text. Then, for all the species detected, dic-

tionaries are loaded and the names of genes are annotated. The third step

applies filters to remove false positive gene names, such as names of gene

families, diseases or names that are ambiguous with common English words

(e.g., white). In the last step of the gene annotation, the remaining candi-

date genes are ranked to the respective gene mention using context profiles

built from Entrez Gene and UniProt annotations. Figure 3.1 summarises

the key idea behind the gene mention normalisation with GNAT.

Drug

recognition

For the task at hand, an in-house drug dictionary was utilized (Plake,

2010). A list of drugs and their synonyms was drawn from DrugBank and

their identification in text is conducted with the use of regular expressions.

Each drug along with its synonyms is represented by a regular expres-

sion that captures its occurrence in text, taking into consideration slight

spelling or naming modifications, e.g., capitalization, different spellings of

their chemical IUPAC (International Union of Pure and Applied Chem-

istry) name 4. Table 3.1 provides some relevant examples. All regular

expressions are compiled to a single Labeled Deterministic Finite State Au-

tomaton (LDFA). Each end state in the automaton stores the corresponding

4http://www.iupac.org/
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Figure 3.1: Interspecies gene mention normalisation with GNAT

Gene p54 has a profile of four contexts. Only the first context from the left
reports the concepts Human, RNA helicase and q23.3 chromosomal band, which
are also found in text (from Hakenberg et al. (2008b)).

identifiers of all drug names that potentially end at this state. When pars-

ing a text, a match with the LDFA immediately triggers the annotation of

the matching phrase with all identifiers associated with the corresponding

accept state. To deal with the false positives that result from ambiguous

abbreviations (e.g., ACC for Acetylcysteine or Adenoid Cystic Carcinoma),

the abbreviations are mapped to their long forms with the use of the algo-

rithm introduced by Schwartz and Hearst (2003). To assess the efficacy of

this dictionary towards the implementation of CASSANDRA, a random

set of 60 MEDLINE records was generated out of the set of 22 million

references utilized by the suggested methodology. The corresponding titles

and abstracts were manually annotated. The respective dictionary achieves

a precision of 88% and a recall of 93% on the identification of drug names

from DrugBank.

MeSH and GO

terms

identification

As far as the recognition of MeSH Disease and GO terms in text is

concerned, this was made through the usage of GoPubMed (Doms and

Schroeder, 2005), a knowledge-based search engine that organizes MED-

LINE references with MeSH and GO annotations. GoPubMed exploits

the hierchical structure of the ontologies and their word composition. It
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Table 3.1: Drug representation with regular expressions - Examples

Drug Synonyms Representation

Fluocinonide
Fluocinonide
Fluocinonido \b(Ff)luocinonid\w+
Fluocinonidum

2-Phosphoglycolic Acid (II|2|ii)[ -]?[Pp]hosphoglycolic[ -]?[Aa]cid

The table shows how the regular expressions are formulated so as to catch both
synonyms and the official name of the drug.

first finds matching seed ontological terms in text and then, it iteratively

extends this set of terms to provide a full annotation for the respective

MEDLINE abstract (Delfs et al., 2004). Figure 3.2 demonstrates how an

abstract is annotated with GoPubMed. With respect to MeSH, only disease

terms were considered. On the other hand, GO was fully used.

3.1.3 Profile generation for drugs and genes

Following the recognition of drugs, genes and ontological terms in text, we

proceed with the automatic generation of context profiles for drugs and

genes. This is a step of particular importance, since the ontological profiles

constitute the means for the estimation of the relatedness between a drug

and a gene and hence, the establishment of putative drug gene associations.

As it has been already mentioned, the context profiles consist of ontological

terms derived from GO and MeSH. The context profiles are literature-

based, meaning that they rely on the ontological terms that co-occur with

drugs or genes in MEDLINE indexed abstracts and titles.

The profile generation for drugs (or genes) is divided in two separate steps;

• Quantification of the strength of the associations between drugs (or

genes) and ontological terms,

• Exclusion of probable incidental associations and generation of the

final context profiles for genes and drugs.
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Compute the

strength of

associations

Regarding the first step, the strength of each association between the

drug (or gene) and the respective ontological term is computed based on

the Pointwise Mutual Information (PMI ). PMI is a probabilistic measure

used to assess the strength of word collocations in a text corpus (Man-

ning and Schütze, 1999). In corpus linguistics, a collocation is a sequence

of words that co-occur more often that it would be expected by chance.

Analogously to the collocation definition, we extent the application of PMI

to co-occurring pairs of drugs (genes) and ontological terms in MEDLINE

abstracts and titles. Thus, the higher the PMI score, the lower the proba-

bility that the drug (gene) and ontological term co-occur by chance.

Let E represent a drug or a gene entity term and C represent a MeSH

Disease or a GO term. We denote with nE the number of documents

where E occurs, nC the number of documents where C occurs, and nE,C

the number of documents where E and C co-occur. N denotes the number

of documents that any E is found to co-occur with any C. PMI between

any given E and C is then defined as shown in Equation 3.1. The higher

the PMI score of the two terms E and C is, the more probable it becomes

to observe these two terms together in the same document.

pmi(E,C) = log
N × nE,C

nE × nC

(3.1)

However, the values that the PMI score can receive are not fragmented

and can rather take any real value. For this reason, we adopt the nor-

malised PMI (Bouma, 2009) (nPMI ) that takes values between [−1,+1].

Equation 3.2 shows the definition of nPMI given any two terms E and C.

If nPMI equals −1, this means that there is no co-occurrence between E

and C in the corpus. A negative value signifies that E and C co-occur less

frequently than one would expect by chance. Conversely, a positive value

indicates that the two terms co-occur more frequently than it would have

been expected by chance, and a value of 1 shows complete co-occurrence

between E and C. An nPMI score of 0.0 shows independence between E

and C, meaning that the two terms co-occur exactly as frequently as it

would have been expected by chance. For that reason, only associations

assigned an nPMI score greater than 0.0 were considered meaningful and

thus, the respective concepts C were included in the profiles of the entities

E.
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npmi(E,C) =
pmi(E,C)

− log
nE,C

N

(3.2)

Associations

refinement

To enhance the quality of the automatically generated ontological profiles,

a further refinement of the terms that participate in a profile is applied.

Hence, an ontological term is included in the context profile of a drug (or

gene), if its nPMI score with the respective drug (gene) meets the following

requirements.

Let A represent the set of ontological terms C that co-occur with an entity

E. For all terms C that co-occur with the entity E, we compute the nPMI

score. Then, we calculate the arithmetic mean of the respective nPMI

distribution. We retain for the profile the terms C, where

npmi(E,C) ≥ meanA(npmi(E,C)) (3.3)

This step constitutes a refinement of the ontological terms inside the profile.

Besides this, an external refinement is applied with respect to the overall

distribution of nPMI scores between any drug (gene) and any ontological

term, where

p-value(npmi(E,C)) ≤ 0.05 (3.4)

npmi(E,C) ≥ mean(npmi(E,C)) (3.5)

among all the npmi(E,C) scores between any entity E and any concept C.

Analytically, all the ontological terms which participate in a context profile,

must have a statistically significant nPMI score with the respective drug

or gene. Additionally, the nPMI score between a drug (or a gene) and an

ontological term must be greater than the arithmetic mean of the nPMI

scores distribution between any drug (or gene) and any ontological term.
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3.1.4 Computation of semantic relatedness between

the profiles

After having generated the context profiles for all drugs and genes found

in MEDLINE abstracts and titles, in this step, the relatedness between

drugs and genes is computed based on their profiles. Unlike the previous

step, wherein PMI qualified the selection of the ontological terms that will

participate in a profile, herein, the respective formula is used to estimate

the statistical semantic similarity between a drug and a gene based on their

context profiles.

MeSH Disease,

GO and joined

profile

similarity

An ontological profile can be viewed either as a consolidated set of ontolog-

ical terms from both GO and MeSH Disease, or as a set of two individual

subprofiles, each one including terms from one single ontology. To compute

the relatedness between a drug and a gene profile, three scores of statistical

semantic similarity are calculated and then combined into an overall score;

one score corresponds to the similarity between the MeSH Disease profiles,

one score corresponds to the similarity between the GO profiles and the

third score corresponds to the similarity between the consolidated profiles

that consist of both types of ontological terms.

Given one type of ontological profile, meaning MeSH Disease, GO or a

consolidated profile, the computation of the relatedness between a drug

and a gene is based on the nPMI values between all possible pairs of the

ontological terms comprising the drug and gene profiles. Thus, for each

drug-gene pair all the possible combinations between their profile terms

are generated and the nPMI score for each such combination is computed.

The computation is based on Equation 3.2.

More formally, let Pd the set of the profile terms for a drug d and Pg the set

of the profile terms for a gene g. For every term pair (Cd ∈ Pd, Cg ∈ Pg),

the npmi(Cd, Cg) is computed as shown in Equation 3.2.

Subprofile

similarity

Once all of the npmi(Cd, Cg) scores between all possible pairs of the drug

and the gene profile terms are computed, the scores are combined to pro-

duce the overall score between the drug and the gene. We compute the

combination of scores following the methodology described in the work of

Varlamis et al. (2004). The proposed measure has been used in the past
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to estimate the similarity between two sets of ontological terms (Halkidi

et al., 2003).

In detail, given Pd and Pg the drug and gene profile terms respectively, for

each Cd ∈ Pd the maximum npmi(Cd, Cg) score is detected, and the average

of all such maximum scores is computed. This is shown in Equation 3.6 as

S1(d, g).

S1(d, g) =
1

|Pd|


Cd∈Pd

max
Cg∈Pg

npmi(Cd, Cg) (3.6)

Similarly, S2(g, d) is computed for all Cg ∈ Pg, the way it is shown in

Equation 3.7.

S2(g, d) =
1

|Pg|


Cg∈Pg

max
Cd∈Pd

npmi(Cg, Cd) (3.7)

Finally, the two scores S1(d, g) and S2(g, d) are combined as shown in Equa-

tion 3.8 to produce the overall score between a drug d and a gene g.

Score(d, g) =
1

2
(S1(d, g), S2(g, d)) (3.8)

Hence, to estimate the semantic relatedness between a drug and a gene,

each ontological term from the drug’s profile is paired with the ontological

term from the gene’s profile which gives the highest nPMI score. At the

end, only the combinations of terms that produce the highest scoring pairs

are kept.

Overall score

computation

After computing the semantic relatedness for each type of subprofiles, the

overall score of semantic relatedness between a drug d and a gene g, i.e.,

SemRel(d, g), is calculated as follows:

SemRel(d, g) =1−
[(1− Score(d, g)go) ∗ (1− Score(d, g)ds)∗(1− Score(d, g)go,ds)]

(3.9)
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where Score(d, g)go, Score(d, g)ds and Score(d, g)go,ds is the semantic relat-

edness between the GO, MeSH Disease and consolidated profiles of a drug

d and a gene g respectively.

The computation of the overall score is based on the Noisy-OR gate model.

This distribution belongs to the family of models which is often referred

to as Independence of Causal Influences (ICI ). It is used when there are

several possible causes for an event, any of which can cause the event by

itself with a certain probability (Zagorecki and Druzdzel, 2004). Corre-

spondingly, each subprofile similarity score is viewed as a probability score

that independently can cause the event of similarity between a drug and a

gene.

Given a collection of drug-gene pairs, the suggested methodology assigns

a score to every drug-gene pair. These pairs are then, in turn, ranked to

suggest putative drug-gene associations. The higher the score is, the higher

the semantic relatedness between the respective drug and gene.

3.2 Materials and Methods - Evaluation

3.2.1 Evaluation datasets

In the current section, the datasets utilized for the evaluation of the algo-

rithm’s efficacy are analysed. The datasets serve two different evaluation

purposes:

• drug gene association prediction and,

• drug repositioning.

3.2.1.1 Evaluation datasets for drug gene association prediction

For the evaluation of the proposed algorithm towards drug gene association

prediction, a series of datasets is necessary. The datasets should consist of

true and false drug gene associations. The suggested algorithm assigns a

semantic relatedness score to every drug-gene pair included in the dataset.
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Once the scores are assigned, the drug-gene pairs are ranked and the per-

formance of the algorithm is evaluated based on the prioritization of true

over false drug gene associations.

Two

evaluation

aspects -

(1)Profile type

(2)Semantic

similarity

metric

In the current work, the performance of the algorithm is examined based on

two main aspects of evaluation. One aspect pertains to the type of drug and

gene profiles, and another one pertains to the computation of their semantic

relatedness. The former involves the potential of the proposed methodology

to utilize either co-occurrence based profiles retrieved from the biomedical

literature or manually curated profiles. The question that arises is what is

the impact of each profile type in the algorithm’s performance. The latter

involves the comparison of nPMI against traditional measures of semantic

similarity. Is nPMI indeed the most efficient measure of semantic similarity

for the task at hand? Both tasks account for the use of datasets that allow

the efficient demonstration of the algorithms’s performance differentiations.

Resources

Few

benchmark

datasets

Obtaining datasets of drug gene associations is a rather demanding task

due to their limited number. Notably, there exists only one Gold Standard

set of drug target interactions which was introduced in the work of Ya-

manishi et al. (2008). In this work, the authors formalized the drug target

interaction inference as a supervised learning problem by combining chem-

ical structure and genomic sequence information. For the evaluation of

their approach, they characterised four classes of drug target interactions

in humans involving enzymes, ion channels, G-protein-coupled receptors

(GPCRs) and nuclear receptors. Then, they utilized that information to

examine the performance of their methodology towards the prediction of

drug target interactions. Their dataset has been, since then, extensively

used as a benchmark by several supervised methodologies towards drug

target interaction prediction (Pahikkala et al., 2014). In the current work,

this dataset is also included in the performance evaluation of the proposed

algorithm and we shall refer to it as the Yamanishi dataset.

DrugBank

dataset

To expand the evaluation of the suggested methodology, the absence of

benchmark drug gene associations sets has to be tackled. On that ac-

count, a series of additional datasets are compiled based on sets of true
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drug gene associations available in public pharmacogenomic databases. For

that purpose, two popular drug related repositories were considered; Drug-

Bank and the Comparative Toxicogenomics Database (CTD) (Davis et al.,

2012). Both databases constitute freely accessible repositories of high-

quality pharmacological data. As it has been mentioned before, DrugBank

is both a bioinformatics and cheminformatics resource which combines de-

tailed data descriptions and comprehensive target information for an exten-

sive list of drugs. The fact that the dictionary used during the annotation of

drugs in MEDLINE titles and abstracts was built based on this database,

makes DrugBank ’s drug target information ideal for the generation of a

benchmark dataset.

CTD dataset -

manually

curated profiles

test

CTD, on the other hand, takes one step further and, unlike traditional

drug-related repositories which comprise mainly structural and chemical

information of drugs along with a list of their physically binding targets, it

includes formalised associations between drugs, genes and diseases. These

associations are either curated or inferred. Notably, the curated associa-

tions are derived from MEDLINE articles and the respective textual ev-

idence is also included in the database. Each set of diseases which are

reported to be associated with either a drug or a gene in CTD can be

considered as a manually curated profile that characterises the respective

drug (or gene). This makes CTD an ideal candidate for the generation of

a benchmark dataset on which the performance of the algorithm can be

analysed when manually curated profiles are used. Most importantly, the

intersection of drug gene associations provided by the suggested method-

ology and CTD form an additional dataset which enables the performance

comparison of the co-occurrence based profiles against the manually cu-

rated profiles.

Compilation of datasets

The compilation of the datasets is conducted as described in Figure 3.3.

The datasets are compiled similarly to the so far unique benchmark dataset

provided by Yamanishi et al. (2008). Indicatively, for each of the sets

there exist both true and false examples of drug-gene interactions. The

first step is to extract the positive pairs (true interactions) listed in each



Chapter 3. Materials and Methods 45

Figure 3.3: Drug gene association datasets compilation

The pipeline for the compilation of the datasets used to evaluate CASSANDRA
is shown. The set of true drug gene associations is retrieved from each resource.
All drugs and genes are combined to generate the false drug gene pairs set.
Then, all drug gene pairs wherein the drug and the gene co-occur in at least
one MEDLINE reference are removed. Lastly, all drug gene pairs containing a
non-profiled drug or gene are also excluded from each dataset.

database. These pairs are then, in turn, used for the generation of the

negative examples (false interactions).

Unknown non-

interacting

drug-gene

pairs

More precisely, each drug is paired with every gene and the resulting

pairwise combinations constitute the so-called false drug gene associations.

These associations are considered false based on the fact that they are not

reported by the respective pharmacogenomic resource, although in actual

fact they may as well constitute true drug gene associations, which have not

yet been confirmed experimentally. However, since there is no information

regarding non-interacting drug targets the above convention is necessary

for the compilation of the evaluation datasets. Still, any false drug gene

association scored highly by the proposed algorithm constitutes an in-silico

prediction of a putative drug target interaction.

Positive bias

of co-occurring

drugs and

genes

Two additional steps follow the generation of false drug gene associations.

The former is to exclude from the evaluation dataset all these drug gene

pairs for which there is at least one co-occurrence in a MEDLINE abstract

or title. This is due to the fact that the goal of this study is to present

a methodology that is able to indirectly pinpoint the similarity between

a drug and a gene. On the premise that their co-occurrence is itself a

signal of putative relation, these drug gene pairs are excluded, even in the

case their nPMI score is negative. Indeed, including drug gene pairs of co-

occurring drugs and genes in the evaluation is shown to introduce a positive

bias in the algorithm’s performance and hence, conceal the algorithm’s true

efficacy (see Chapter 4, Section 4.3.1.1).
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Positive bias

of non-profiled

drugs and

genes

Given the fact that not all drugs (genes) have profiles generated, the final

step is to exclude from the datasets the drug gene pairs wherein either the

drug or the gene has an empty profile. Two are the reasons for which a

drug or a gene is assigned an empty profile; either the annotators reported

no occurrence of the respective entity in MEDLINE abstracts and titles,

or the ontological terms occurring with the entity do not participate in the

profile due to their unfitting nPMI score as this has been defined in Section

3.1.3. Pairs of empty profiles result in zero scored drug gene associations

that when included in the evaluation falsely enhance the performance of the

suggested algorithm. Markedly, such is the case of the DrugBank dataset;

41 % of the false drug gene pairs generated after the exclusion of non-co-

occurring drugs and genes, consist of non-profiled entities. When scored

with zero, these pairs boost the performance of the suggested algorithm but,

on the other hand, they obfuscate its true discriminative power. Excluding

them eliminates the bias that they introduce (see Table 4.6).

3.2.1.2 Evaluation sets for drug repositioning

No available

drug

repositioning

dataset

Towards demonstrating the application of the method in identifying can-

didate drug repositioning cases, a set of all known drugs that have been

repositioned has to be compiled. Ideally, the set should include along with

the drug identifiers, the old indication of each drug and the new indication.

However, there is no such dataset publicly available. Drug repositioning

cases are scattered across the literature. For that reason, the literature

is systematically mined for the manual generation of a dataset comprising

drug repositioning data. The set includes drugs for which there exists a

DrugBank identifier. Apart from MEDLINE abstracts, information is ex-

tracted from the FDA, Wikipedia and other web resources comprising drug
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related data 5. Old and new indications are reported along with the year

of approval of each drug’s new indication.

For the task at hand, we focus on drugs that were FDA approved within

the last 5 years with their new indications and for which the proposed

algorithm has generated co-occurrence based profiles out of biomedical lit-

erature. Thus, allMEDLINE data from 2009 and on was excluded from the

application of the suggested methodology. The application of the method

in identifying candidate drug repositioning cases is conducted as follows:

the drug’s profile is generated, and the MeSH disease terms that partic-

ipate in the profile are examined. The efficacy of the approach can then

be assessed on whether the new indication is included in the drug’s profile,

and if so, whether it is ranked high in the list of the drug’s profile terms.

3.2.2 Alternative semantic similarity metrics

CASSANDRA utilizes the statistical measure nPMI to quantify the se-

mantic similarity between a drug and a gene profile. To assess the nPMI ’s

efficacy, the suggested measure is compared with two traditional metrics of

semantic similarity; the Wu-Palmer (1994) and Lin (1998) measures.

Wu and Palmer

For two concepts C1 and C2 and their LCA Least Common Ancestor C3,

the Wu-Palmer semantic similarity is defined as follows:

5

http://www.cancer.gov/

http://www.centerwatch.com/

http://www.drugs.com

http://www.medicalnewstoday.com/

http://www.medscape.com/

http://www.webmd.com/
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WP (C1, C2) =
2× depth(C3)

2× depth(C3) + distance(C1, C3) + distance(C2, C3)
(3.10)

, where depth(C3) = distance(C3, root)

For two ontological concepts, the Wu-Palmer metric estimates their se-

mantic relatedness by calculating the distance of the shortest path that

connects them in the ontology. The lower the distance between the con-

cepts and their LCA and the higher the distance of LCA from the root of

the ontology, the greater the similarity of these concepts.

Lin

Let two concepts C1 and C2 and their LCA Least Common Ancestor C3.

The Information Content of C1 is defined as:

IC(C1) = − logP (C1) (3.11)

, where P (C1) is the probability of occurrence of the concept C1 in the

corpus. The higher the probability of a concept’s occurrence, the lower the

IC of the concept is.

The Lin semantic similarity is, then, calculated as follows:

Lin(C1, C2) =
1

IC(C1) + IC(C2)− 2× IC(C3)
(3.12)

As shown by the equation above, the Lin metric takes into account the

hierarchy of the ontology, but also considers the Information Content (IC )

of the concepts in the calculation of semantic relatedness. Thus, it is both

a probabilistic and structural metric of semantic similarity.



Chapter 4

Results

This Chapter describes the tasks that were conducted to evaluate the effi-

ciency of CASSANDRA towards drug gene association prediction. More

specifically, this chapter reports

• The occurrence and co-occurrence statistics of terms in abstracts and

titles of MEDLINE indexed articles.

• The statistics of the drug gene association datasets used for the al-

gorithm’s evaluation.

• Analysis of the algorithm’s performance towards drug gene associa-

tion prediction.

– How does the type of ontological profiles affect the algorithm’s

prediction efficacy? Are manually curated profiles better than

co-occurrence based profiles?

– Is nPMI the most appropriate measure of semantic similarity?

• Analysis of the algorithm’s performance towards drug repurposing.

Do the profiles include the new indications?

• Manual analysis of three drug gene associations proposed by CAS-

SANDRA.

49
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4.1 MEDLINE statistics

Overall, 23, 487, 871 MEDLINE abstracts and titles that were available

at the time of the algorithm’s implementation are considered. Table 4.1

shows the number of unique drugs, genes, MeSH Diseases and GO terms

found in these MEDLINE abstracts and titles. Additionally, the table

shows the number of documents that contain at least one term of interest.

Notably, the numbers reported indicate the excess of information available

in MEDLINE abstracts and titles and motivates the exploitation of the

respective data.

Table 4.1: Statistics of term annotations in MEDLINE

Term Number Documents

drug 2, 909 4, 599, 847
gene 58, 261 3, 512, 899

Gene Ontology
Biological Process 8, 602, 996

20, 255 Molecular Function 4, 550, 929
Cellular Component 3, 036, 912

MeSH Disease 4, 194 13, 242, 432

Table shows the considered term types, along with the number of the unique
terms recognised. The final column shows the number of the MEDLINE titles
and abstracts containing at least one annotation of the respective term type. Ev-
idently, the number of terms and documents indicates the excessive information
available.

The same holds for the co-occurrences of drugs and genes with MeSH Dis-

eases and GO terms. As shown in Table 4.2, the co-occurrences are plenti-

ful and hence they can be used for the contextual description of drugs and

genes. In particular, the vast majority of drugs and genes co-occur with up

to 100MeSH Disease and 300 GO terms (∼ 100 terms of each subontology)

(see Figure 4.1). Limited are the drugs and genes that co-occur with more

than 1000 terms. Evidently, the necessity to quantify the strength of each

co-occurrence rises. Not every MeSH Disease or GO term co-occurring

with either a drug or a gene can be included in the respective profile, and

thus this motivates the use of nPMI. As it has been mentioned in Section

3.1.3, the higher the nPMI score, the lower the probability that a drug (or
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gene) and an ontological term co-occur by chance. The additional filtering

steps enhance the quality of the profiles.

Table 4.2: Co-occurrences for drugs, genes and ontological terms in
MEDLINE

Entity Ontological Term Documents

drug MeSH Disease 2, 828, 259
GO biological process 2, 644, 296
GO molecular function 1, 747, 743
GO cellular component 1, 001, 228

gene MeSH Disease 2, 360, 673
GO biological process 2, 439, 335
GO molecular function 2, 030, 772
GO cellular component 1, 121, 913

The table shows the number of MEDLINE abstracts containing at least one
co-occurrence of a drug or a gene with a MeSH disease or a GO term.

The co-occurrences between ontological terms in MEDLINE abstracts are

also quantified. The results are shown in Table 4.3. Evidently, the number

of documents containing at least one co-occurrence of two distinct MeSH

Disease or GO concepts is significantly large. This suggests that nPMI

can be used as a measure of semantic similarity between two ontological

terms.

Table 4.3: Ontological terms co-occurrences in MEDLINE

Ontological Term Ontological Term Documents

MeSH Disease MeSH disease 9, 065, 044
Gene Ontology Gene Ontology 6, 885, 166
MeSH Disease Gene Ontology 6, 320, 168

MEDLINE abstracts and titles containing at least one co-occurrence between
two MeSH Disease or GO concepts. The number of co-occurrences is signif-
icantly large and this motivates the use of nPMI as a measure of semantic
similarity between the ontological terms.
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Figure 4.1: Graphical representation of co-occurrences for drugs and
genes

The vast majority of drugs and genes co-occur with up to 100 MeSH Disease and
300 Gene Ontology terms (∼ 100 terms of each subontology). Limited are the
drugs and genes that co-occur with more than 1000 terms. Notably, not every
term can be included in a drug/gene profile. The strength of co-occurrences has
to be quantified and the meaningless co-occurrences have to be excluded.
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4.2 Evaluation datasets statistics

In this subsection, the statistics of the datasets used for the evaluation

of the algorithm’s performance are provided. The resources and compi-

lation pipeline utilized for the generation of the evaluation datasets are

analytically described in Section 3.2.1.1. Table 4.4 gives an overview of the

resulting datasets and reports the number of drugs, genes and associations

(true and false) per dataset. It also reports the evaluation aspect for which

each dataset is considered.

Approved &

Experimental

The DrugBank dataset splits in two subsets; the Approved and the Exper-

imental. The former includes drugs that have been already approved and

entered the pharmaceutical market, whilst the latter includes experimental

compounds. The discrimination between these two datasets demonstrates

whether the type of a drug affects the performance of the suggested al-

gorithm or not. The datasets DrugBankApproved , DrugBankExperimental and

Yamanishi are used for the evaluation of the proposed methodology when

co-occurrence based profiles are considered.

Binding &

Related

Analogously, the CTDBinding and CTDRelated sets are used to demonstrate

the potential of the suggested methodology to propose drug gene associa-

tions when manually curated profiles are considered. As shown in Table 4.4

CTD also splits in two subsets. This is due to the content of the database

itself. CTD includes two types of associations between drugs and genes;

the associations wherein the drug physically binds to a product of the re-

spective gene and the associations wherein the drug affects the regulatory

processes of a gene or one of its products. Hence, the CTD datasets are

accordingly compiled and form the Binding and the Related subsets respec-

tively. In the case of CTD, the drugs are stored in the repository with their

MeSH identifier from the MeSH tree Chemicals and Drugs. Seeing that

not all MeSH identifiers correspond to DrugBank identifiers and, hence,

mapping them would result to the loss of drug gene associations provided

by CTD, the CTD identifiers are retained.

The

comparison

dataset

Finally, the CTDcb&mc set is the intersection between the drug gene as-

sociations that have been identified and scored by the suggested algorithm

in MEDLINE abstracts and titles and the drug gene associations provided

by CTD. Consequently, all drug gene associations included in CTDcb&mc
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consist of drugs and genes that they have been assigned both manually

curated profiles by the CTD curators and co-occurrence based profiles by

the proposed algorithm. To compile this dataset, for all CTD drug gene

associations the drugs were, this time, mapped to their DrugBank identi-

fiers. The resulting drug gene associations were then compared with the

drug gene associations generated by the suggested algorithm after travers-

ing the literature and then, the intersection of these sets was retained. This

dataset is of particular importance as it enables the comparison between

co-occurrence based profiles that are derived from literature and manually

curated profiles. The subscript cb&mc stands for the Co-occurrence Based

& Manually Curated and helps to discriminate CTDcb&mc from the rest of

the datasets derived from CTD.

Figure 4.2: True drug gene associations Venn Diagram

An overview of the datasets used for the different evaluation aspects of the
suggested methodology. The Venn Diagram illustrates the overlap between the
true drug gene associations included in the three datasets. The significantly
small overlap indicates that the datasets are substantially differentiated.
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Differentiated

datasets

Figures 4.2 and 4.3 illustrate an overview of the datasets used for the

evaluation. The Venn Diagrams show the overlap between the DrugBank,

Yamanishi and CTDcb&mc datasets. As shown in Figure 4.2 the datasets

are significantly differentianted in terms of the true drug gene associations

they comprise. Indeed, all three of them have an overlap of only 27 drug

gene associations. They also differ in size. The explanation for that is

straightforward. The vast majority of drug gene associations in CTDcb&mc

are rather related than directly binding associations. On the other hand,

the DrugBank and Yamanishi sets contain drug gene associations where

the drug is proven to interact with the protein coded by the respective gene.

Figure 4.3 shows the overlap of the datasets it terms of drugs and genes. As

shown, the overlap in this case is again relatively small and the size of the

sets again varies. The high differentiation degree of the datasets poses two

advantages; first, it allows the comprehensive comparison of the suggested

algorithm with alternative implementations of the same methodology and

second, it demonstrates the robustness of the algorithms when inferring

putative drug gene associations.

Figure 4.3: Venn Diagrams for drugs and genes in the evaluation
datasets

An overview of the datasets used for the different evaluation aspects of the
suggested methodology. The drug and gene Venn Diagrams illustrate the overlap
between the three datasets with respect to the drugs and genes they include.
Similarly to the Venn Diagram of true drug gene associations, the datasets show
a substantial differentiation.
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4.3 Drug gene association prediction

In this section, the results of the algorithm’s efficacy towards drug gene

association prediction are reported. As it has been mentioned before, the

presented method utilizes the co-occurrences of GO and MeSH Disease

concepts with drugs and genes in MEDLINE titles and abstracts. Based

on that co-occurrence information, profiles of ontological terms are created

for both drugs and genes. Then, with the help of a corpus-based statistical

measure, nPMI, the drugs are associated to genes by assessing the semantic

relatedness of their profiles. Then the proposed drug gene associations are

prioritized based on their relatedness score. For details regarding the steps

of the algorithm, please refer to Chapter 2 (Background).

The suggested algorithm was applied on a series of evaluation datasets (for

details regarding the datasets compilation and statistics, please refer to

Sections 3.2.1.1 and 4.2 respectively). As shown, the datasets consist of

true and false drug gene pairs. The proposed algorithm assigns a score

of semantic relatedness to every drug gene pair included in these datasets

and the drug gene pairs are, afterwards, ranked according to that score. To

demonstrate the algorithm’s efficacy towards the prioritization of true drug

gene associations, the respective Receiver Operating Characteristic (ROC )

curves, Area Under the Curve (AUC ) values and Precision-Recall (PR)

curves are provided.

ROC curves
ROC curves have been extensively used towards the evaluation of binary

decision algorithms (Bandos et al., 2010). In a binary decision problem, the

classifier labels input examples as either positive or negative. A ROC curve

plots the True Positive Rate (TPR) on the x -axis and the False Positive

Rate (FPR) on the y-axis for different cut-off points. Each point on the

ROC curve, meaning a TPR-FPR pair represents the fraction of positive

examples that have been correctly labeled with respect to the fraction of

negative examples that are misclassified as positive, corresponding to a

particular decision threshold. An algorithm with no overlap between the

two distributions, hence with a TPR of 1.0 and a FPR of 0.0, succeeds a

perfect discrimination between the class of the positive and the class of the

negative examples. Therefore, the closer the ROC curve is to the upper
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left corner, the higher the overall accuracy of the algorithm (Zweig and

Campbell, 1993).

AUC values
To evaluate the performance of the proposed method, in tandem with

the ROC curves, the respective Area Under the Curve (AUC ) values are

provided. The AUC of a classifier is basically the probability that the clas-

sifier will rank a randomly chosen positive instance higher than a randomly

chosen negative instance (Fawcett, 2006). In this work, ROC curves and

AUC scores are used in the notion of the performance evaluation applied in

the field of Information Retrieval (Manning et al., 2008). More precisely,

the usage of ROC curves illustrates the ability of the method to prioritize

the positive over the negative examples, having as an input only a ranked

list of examples. Herein, these examples are simply the scored drug gene

associations that correspond to each evaluation dataset. Given a particular

dataset, the probability of a randomly chosen positive drug gene associa-

tion to rank higher that a randomly chosen negative drug gene association

is represented by the corresponding AUC value.

PR curves

contribution

Besides ROC curves which are very insightful performance representations

in the case of binary classifications, PR curves are also utilized to illustrate

the efficacy of the algorithm. Unlike ROC curves , PR curves show the ratio

of true positives among all the predicted positives under a given recall rate.

It has been shown that a classification method dominates the ROC space

if and only if it dominates the PR space (Davis and Goadrich, 2006). PR

curves are particularly informative and biologically meaningful in the case

of imbalanced datasets (Chen et al., 2012). In an effort to give an overall

picture of CASSANDRA’s efficacy, the PR curves in varying degrees of

imbalance between true and false examples (i.e., 1:1, 1:2, 1:4 and 1:8) are

also provided.

Another insightful performance metric is Specificity (or True Negative Rate)

which measures the proportion of negatives that are correctly identified as

such. Apparently, to measure Specificity, a clear indication of what a true

negative example is becomes necessary. However, in the current evaluation

the datasets contain clear signals of what are the positive examples, but

it is not possible to accurately assess which are the true negative exam-

ples (and hence compute the Specificity) due to the absence of supporting

experimental evidence (as shown in Figure 3.3, the false examples were
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generated from the pairwise combination of all drugs and genes included in

the respective drug related repositories). The computation of Specificity re-

mains an open problem in the studies of drug-target prediction (Pahikkala

et al., 2014).

Two main

evaluation

parts

The evaluation of the algorithm towards drug gene association prediction

is divided in two main parts; the first part examines the performance of

the algorithm with respect to the type of terms that constitute the drug

and gene profiles. Both manually curated and co-occurrence based profiles

are utilized and the respective ROC curves, AUC values and PR curves

are provided. In the second part, alternative measures of semantic similar-

ity are explored and compared to the statistical semantic similarity metric

nPMI. Along with the ROC curves, AUC values and PR curves, the dis-

criminative power of each measure is also considered to assess in what

degree the positive drug gene associations differentiate from the negative

drug gene associations.

4.3.1 Performance evaluation - Ontological profiles

As it has been mentioned before, the proposed methology utilizes ontolog-

ical profiles in order to assess the semantic similarity between a drug and a

gene. The ontological profiles constitute the literature fingerprints of drugs

and genes, hence assessing their quality is of primary importance towards

the establishment of drug gene association predictions. In this part of the

evaluation, the role of ontological profiles is thoroughly examined.

In principle, the suggested algorithm utilizes co-occurrence based profiles

derived from biomedical literature. However, one main advantage of the

proposed pipeline is that it can also compute the semantic relatedness be-

tween a drug and a gene in case the respective manually curated profiles

are available. Consequently, the arising question is: Which profile type is

the most suitable in terms of the algorithm’s performance?

Thus, three evaluation aspects are considered for this task:

• Performance evaluation when co-occurrence based profiles are used.

• Performance evaluation when manually curated profiles are used.
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• Comparison of performance between manually curated and co-occurrence

based profiles.

4.3.1.1 Co-occurrence based profiles

With regards to this evaluation part, the DrugBank and the Yamanishi

dataset are utilized. Figure 4.4 demonstrates the performance of the algo-

rithm. The suggested method obtained an AUC of 0.84 for the DrugBank

drug gene associations in which Approved drugs participate and 0.58 when

Experimental drugs participate. Considering the reported results for the

Yamanishi dataset (an AUC of 0.74 was obtained), and taking into ac-

count its small overlap with the DrugBank datasets (as shown in Figure

4.2, the DrugBank and the Yamanishi datasets overlap only by 6% in terms

of true drug gene associations), the value of the AUC (0.74) suggests the

robustness of the suggested methodology.

Why better

performance

for Approved

drugs?

As it is demonstrated in Figure 4.4, the reported results suggest that the

AUC for the Approved drugs is higher than the AUC for the Experimental

drugs. To understand the reason for this difference, the number of litera-

ture references for both types of drugs is examined. Approximately, 87%

of the papers with at least one drug occurrence mention an Approved drug,

while only 25% of the papers mention an Experimental drug. The under-

epresentation of Experimental drugs in literature results in poor profiles

for the respective type of drugs. Indeed, the average number of concepts

in the profile of an Experimental drug is 273, while for an Approved drug

is 699 (see Table 4.5).

Why better

performance

for Human

genes?

Accordingly, when drug gene associations wherein Human genes partici-

pate are considered, the AUC values increase for both Approved and Exper-

imental drugs to 0.88 and 0.77 respectively, as shown in Figure 4.5. This is

because, Human genes are discussed more in literature than the genes that

belong to other species. Altogether, genes from 31 species were annotated

in MEDLINE abstracts and titles. Approximately, 70% of the papers with

at least only one gene occurrence mention a Human gene, while 38% of

the papers mention genes that belong to the rest of 30 other species. The

average number of concepts in the profile of a Human gene is 451 and it is

significantly higher than that of a gene which belongs to other species (i.e.,
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Figure 4.4: ROC curves for co-occurrence based profiles

ROC curves for datasets when co-occurrence based profiles are utilized. The
curves show that CASSANDRA is robust and predicts well if there is sufficient
underlying data (Approved and Yamanishi). For Experimental drugs little is
published and hence the method performs worse.

61). This explains the improvement in the performance of the proposed

algorithm when applied on the respective subset.

The above results suggest that the method under evaluation successfully

interrelates drugs and genes even when these are not co-mentioned in text.

Clearly, the amount of literature references plays a significant role towards

the establishment of reliable profiles for both drugs and genes and the

computation of their semantic relatedness.

The impact of empty-profiled and co-occurring entities

At this point, two important steps towards the assessment of the algo-

rithm’s efficacy have to be pinpointed; the exclusion from the evaluation
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Table 4.5: Arithmetic mean of statistically significant concepts in pro-
files

Entity Type Disease GO All Documents (%)

drug Approved 239 461 699 87
Experimental 58 215 272 25

gene Human 161 290 451 70
non-Human 17 44 61 38

The table reports the average number of statistically significant concepts that
are included in the profiles of Approved/Experimental drugs and Human/non-
Human genes. The percentage of documents that include at least one occurrence
of the each entity are also provided. The underpresentation of the Experimental
drugs and non-Human genes in literature results in poor profiles. This affects
the algorithm’s performance on the respective datasets.

datasets of drug gene pairs that constitute by a drug or a gene with an

empty profile and the exclusion of drug gene pairs wherein the drug is

found to occur with the gene in at least one MEDLINE publication (see

Figure 3.3). These steps have a significant impact in the demonstration of

the algorithm’s performance.

The impact of

empty-profiled

entities

More specifically, when drugs and genes with an empty profile are consid-

ered, the AUC values obtained for the datasets DrugBankApproved , Drug-

BankExperimental and Yamanishi are 0.89, 0.50 and 0.74 respectively. This

effect can be explained when considering the statistics reported in Table

4.6. When a drug gene pair constitutes of an empty-profiled entity, the

association score between the drug and the gene equals to 0.0. Thus, the

inclusion of such pairs in the evaluation datasets signifies the increase in

the number of zero-scored drug gene pairs.

The better get

better

As shown in the Table, 41% of the initial set of false drug gene associations

consist of an empty-profiled drug or gene, hence 41% of the drug gene pairs

have an association score of 0.0. On the other hand, the majority of the true

drug gene pairs included in the DrugBankApproved dataset are scored highly

(see upper left corner of Figure 4.12). Consequently, the classification task

in this case is facilitated and the algorithm obtains an AUC of 0.89 (instead

of the previously reported 0.84).
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Figure 4.5: ROC curves for Human and non-Human genes

Performance evaluation of associations between drugs and Human genes. The
curves show that CASSANDRA performs better when drug gene pairs include
Human genes. For Human genes there is a lot published and that has a beneficial
impact on the method’s performance.

The worse get

worse

However, the situation differs for the dataset that consists of Experimental

drugs. The percentage of empty profiled pairs for both true and false drug

gene associations is similar (46% and 41% respectively). At this point, it

has to be noted that the score distributions between the true and the false

drug gene associations contained in this dataset are already quite similar

(see 1st row, 2nd column in Figure 4.12). When considering the empty-

profiled pairs in the evaluation, the distributions become even more alike

and this results in the drop of the algorithm’s classification performance.

The AUC obtained is 0.50 (i.e., random classification). On the other hand,

the performance of the algorithm in the Yamanishi dataset remains stable

to an AUC of 0.74. This is no surprise, if we take into account that less

than 1.0% of the drug gene pairs constituting both the initial set of true
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Table 4.6: AUC values when including non-profiled drugs and genes

% empty-profiled AUC
true pairs false pairs

DrugBankApproved 0.01
41

0.89
DrugBankExperimental 46 0.50

Yamanishi 0.02 0.4 0.74

The table reports the percentage of empty-profiled drug gene pairs contained in
the initial evaluation datasets and the respective AUC values. For the Drug-
BankApproved dataset, the performance improves due to the high association score
of true drug gene pairs and the high percentage of empty-profiled false drug gene
pairs. In the DrugBankExperimental dataset, true and false drug gene pairs con-
tain similar percentages of empty-profiled drug gene pairs, hence, the AUC value
drops to 0.50. In the Yamanishi dataset the small amount of empty profiled drug
gene pairs hardly affects the classification task.

and false drug gene pairs of the Yamanishi dataset consist of empty profiled

drug gene pairs.

The impact of

co-occurring

entities

Similar is the case when the evaluation datasets include drug gene pairs

that consist of drugs and genes which co-occur in at least one MEDLINE

record. For example, in the case of the DrugBankApproved dataset, such

pairs further boost the algorithm’s performance by 4.0% (this time the

algorithm obtains an AUC value of 0.91). However, the goal of this study

is to present a methodology that is able to indirectly pinpoint the similarity

between a drug and a gene.

Consequently, to elucidate CASSANDRA’s true classification efficacy, the

drug gene pairs that consist of empty-profiled or co-occurring drugs and

genes are excluded from the evaluation datasets. This way the method

remains free from positive bias that would render the proposed drug gene

association prediction method overoptimistic.
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4.3.1.2 Manually curated profiles

The suggested algorithm utilizes co-occurrence based profiles of ontological

concepts derived from the biomedical literature towards the assessement of

latent associations between drugs and genes. These profiles can be viewed

as feature vectors for drugs and genes. The methodology can incorporate

any such feature vectors as long as they consist of MeSH Disease and GO

terms. Ideal is the case of acquiring a set of manually curated ontological

terms that are found and suggested by curators to be associated with a drug

or a gene. On that premise, couldCASSANDRA successfully predict drug

gene associations? To answer this question, CTD is utilized.

Why CTD?
As it has been aforementioned, CTD is a publicly available biomedical

repository, which unlike to other resources that comprise pharmacological

information, it also contains formalized relations between drugs, diseases

and genes. These relations are being manually curated in a regular basis,

so that CTD constitutes a reliable and up-to-date pharmacological reposi-

tory. For this evaluation step, the drug-MeSH Disease and the gene-MeSH

Disease relations provided by CTD are utilized to define the manually cu-

rated profiles for drugs and genes respectively. The relations between a

MeSH Disease and a drug or a gene can be either of therapeutic nature

(the application of the drug or targetting the respective gene or its prod-

ucts has a beneficial effect towards the treatment of the respective disease)

or of a causal/metabolism-pertaining nature.

Binding and

Related

associations

Similarly, the evaluation datasets comprising true and false drug gene pairs

are also derived from CTD. As it has been mentioned in Section 3.2.1,

CTD comprises two types of drug gene associations. Those that represent

a physical binding between a drug and a gene (or its products) and those

that represent the impact of the drug on the gene’s regulatory processes.

For instance, an example of a Related association would be:

Thalidomide results in increased activity of ABCB1 protein.

while,

Diclofenac binds to ALB protein.

is considered as a Binding association.
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Figure 4.6: ROC curves for manually curated profiles

The curves show that CASSANDRA produces comparable prediction perfor-
mance when manually curated profiles are utilized. The algorithm successfully
prioritizes direct (i.e., physically interacting) drug gene associations over the in-
direct ones. Once more, the performance improves when associations containing
Human genes are considered.

Improved

performance

for Binding

associations

As shown in Figure 4.6, the suggested method obtains an AUC value of

0.84 for the Binding subset. When considering only Human genes, the

AUC value rises to 0.86. With respect to the Related drug gene asso-

ciations dataset, CASSANDRA achieves an AUC of 0.77. This value

increases to 0.79 when taking into account only drug-Human gene pairs.

The arithmetic mean of MeSH Diseases related to Human genes in the

CTD subsets Binding and Related is 8 and 4 respectively. In the case of

non-Human genes, the respective means decrease to 6 and 2. This finding

corroborates the fact that the more terms are included in the profile, the

better the predictive efficiency of the algorithm. Another interesting finding

is that the proposed method demonstrates in general a better performance

on the Binding dataset than on the Related dataset. This justifies the
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algorithm’s potential to successfully prioritize the drug-target interactions

over drug gene associations.

The above results clearly demonstrate that the proposed methodology can

utilize either co-occurrence based ontological profiles or manually curated

profiles with a comparable performance. In both cases, the estimation of

the statistical semantic relatedness between these profiles can produce a

meaningful ranking of drug gene associations. Notably, the algorithm pro-

motes in ranking direct drug gene associations (i.e., physically interacting

drug protein associations) over indirect drug gene associations.

Figure 4.7: PR curves for all datasets

All PR curves are plotted for an 1:1 ratio of imbalance between the set of
true and false drug gene associations. As shown, CASSANDRA’s classifica-
tion efficacy on the PR space is consistent to the one demonstrated in the ROC
space. Again, the performance of the algorithm is better on the datasets Drug-
BankApproved and CTDBinding , when these are compared to the performance of
DrugBankExperimental and CTDRelated respectively.

To confirm the algorithm’s efficacy towards drug gene association predic-

tion, the PR curves for the datasets utilized so far are provided. Given a
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specific dataset, Precision is plotted against Recall for different ratios of

imbalance between the set of true drug gene associations and a subset of

randomly selected false drug gene associations.

PR curves are

consistent

Figure 4.7 shows the respective PR curves on an 1:1 ratio of imbal-

ance for the datasets DrugBankApproved , DrugBankExperimental , Yamanishi,

CTDBinding and CTDRelated . As shown, CASSANDRA dominates both

the ROC and the PR space. The results are consistent to the ones sug-

gested by the ROC curves. Given the same recall space, the algorithm

achieves higher precision for the datasets DrugBankApproved and CTDBinding

when these are compared to DrugBankExperimental and CTDRelated respec-

tively. Same is the algorithm’s behavior when different ratios of imbalance

are considered (see Supplementary Material, Figure 7.1). The case of Drug-

BankExperimental dataset is particular. As shown in Figure 4.12 (1st row, 2nd

column), the score distributions for true and false drug gene associations

included in this dataset are very similar. Therefore, when increasing the

ratio of imbalance the performance is expected to drop faster in contrast

with the rest of the datasets.

4.3.1.3 Co-occurrence based vs. manually curated profiles

The suggested methodology can utilize either co-occurrence based profiles

or manually curated profiles and successfully prioritize known drug gene

associations. The arising question is which profile type performs better to-

wards the establishment of latent drug gene associations. Manually curated

profiles are expected to outperform due to their high quality and strongly

established relation to drugs or genes compared to the co-occurrence based

profiles. In this section, the comparison between utilizing manually cu-

rated and co-occurence based profiles towards the discovery of drug gene

associations is described.

To compare the two profile types, all CTD true drug gene associations are

considered. The set of false drug gene associations is compiled as described

in Section 3.2.1. Then, the drug gene associations wherein the drug and

the gene have both manually curated and co-occurrence based profiles are

maintained. These associations basically constitute the intersection of CTD

drug gene associations and the drug gene associations provided by the
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suggested methology. Of course, the drug gene pairs wherein the drug and

gene are co-mentioned in literature were excluded. The resulting dataset

i.e., CTDcb&mc, is then used for the comparison between the manually

curated and the co-occurrence based ontological profiles.

Figure 4.8: ROC curves - Manually curated vs. co-occurrence based
profiles

The curves show that CASSANDRA performs better in the case of co-
occurrence based GO profiles than in the case of manually curatedMeSH Disease
profiles. When co-occurrence based profiles of both ontologies are used, the AUC
value equals the one obtained by manually curated profiles. The performance
drops by 6% in the case of co-occurrence based MeSH Disease profiles.

Co-occurrence

GO profiles

outperform in

ROC space

As shown in Figure 4.8, co-occurrence based profiles that constitute of

GO terms outperform manually curated MeSH Disease profiles. The for-

mer achieves an AUC of 0.77 in comparison to the latter that managed

an AUC of 0.76. Surprisingly, when using both GO and MeSH Disease

co-occurrence based profiles, the performance drops to an AUC of 0.75.

Comparing manually curated to co-occurrence based MeSH Disease pro-

files, the former outperformed the latter only by 6%.
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Figure 4.9: PR curves - Manually curated vs. co-occurrence based
profiles

The PR curves are consistent to the respective ROC curves. The co-occurrence
based GO profiles achieve a higher Precision to Recall performance compared
to the manually curated MeSH Disease profiles. Combined co-occurrence based
profiles that consist of both ontologies also manage higher precision than the
manually curated ones within certain ranges of Recall.

Co-occurrence

GO profiles

outperform in

PR space

To insure the aforementioned results, the PR curves are also provided

(see Figure 4.9). The performance of the algorithm is consistent to the

one illustrated by the ROC curves. As shown, the co-occurrence based

GO profiles achieve higher precision for most of the Recall values. Within

the Recall ranges (0.0, 0.2) and (0.85, 1) combined co-occcurrence based

profiles of GO and MeSH Disease terms also managed higher Precision.

When introducing different ratios of imbalance the algorithm’s efficacy is

not substantially affected (see Supplementary Material, Figure 7.2). Co-

occurrence based profiles including GO terms continue to outperform the

rest. When focusing on MeSH Disease terms, the co-occurrence based pro-

files are quite close in performance to the manually curated ones. This
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suggests that co-occurrence information encompasses a sufficient and reli-

able signal of association between two entities.

The impact of GO terms

At this point, the differentiations in the algorithm’s performance pertaining

to the type of ontological terms included in a profile, are further explored.

All datasets for which there exist co-occurrence based ontological profiles

corresponding to drugs and genes are utilized. The evaluation process is

repeated and the algorithm’s efficacy is estimated considering only one type

of ontological terms in each experiment; MeSH Disease or GO terms. The

results are compared to the AUC values obtained when using combined

ontological profiles. Table 4.7 reports the respective findings.

Table 4.7: AUC values for different type of ontological profiles

Combined
profile

Gene
Ontology

MeSH
Disease

DrugBankApproved 0.837 0.842 0.77
DrugBankApproved(HS) 0.875 0.846 0.855
DrugBankExperimental 0.577 0.675 0.393
DrugBankExperimental(HS) 0.772 0.79 0.71
Y amanishi 0.735 0.775 0.655
CTDcb&mc 0.756 0.771 0.71

The datasets comprising drugs and genes with co-occurrence based profiles were
included in the analysis. The AUC is estimated when solely GO or solely MeSH
Disease terms are utilized. The results are compared to the performance achieved
for combined ontological profiles. GO terms boost the performance of the algo-
rithm and have the most intense impact in successfully discriminating true from
false drug gene associations.

GO terms are

the most

beneficial

GO terms were observed to have a significantly larger impact in the pre-

diction performance compared to the MeSH Disease terms. More precisely,

considering only GO terms, the AUC values increase in almost all datasets.

Notable is the case of the DrugBankExperimental dataset wherein GO pro-

files performed better by 14.5% when compared to the combined profiles,
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and by 42% when compared to MeSH Disease profiles. As it has been re-

ported before, Experimental drugs are underrepresented in literature and

the average number of ontological concepts is significantly lower than the

number of concepts included in the profiles of Approved drugs. Evidently,

GO terms are proved to be more efficient in establishing latent associations

between drugs and genes, even when the literature information provided

is limited. These findings are in complete accordance with the results re-

ported in Figures 4.8 and 4.9, wherein the co-occurrence based profiles are

compared to the manually curated ones.

Why are GO

terms more

predictive?

The above analysis suggests that the use of co-occurrence based GO pro-

files can successfully prioritize true from false drug gene associations. But

why do GO terms boost the algorithm’s performance? This is most likely

due to specific nature of GO terms compared to that of MeSH Disease

terms. More specifically, GO constitutes a controlled vocabulary entirely

dedicated to the attributes of genes and their products. These terms may

sufficiently characterise the latent processes that a drug is involved in, in

case the drug and the term share significant mutual information. On the

other hand, diseases are usually a combination of several conditions, func-

tions, processes and symptoms that each one of them can be connected to

several drugs and genes at the same time. Hence, the associations proposed

by the semantic similarity of MeSH Disease terms are not as precise as the

ones derived from the semantic similarity between GO terms.

The type of

terms is

important

To conclude, the results provided in this evaluation part, demonstrate the

potential of co-occurrence based profiles compared to manually curated

profiles towards the prediction of putative drug gene associations. Most

importantly, it is shown, that if co-occurrence based profiles consist of terms

highly precise and descriptive (such as GO terms), they can outperform

manually curated profiles. The contribution of GO terms towards drug

gene association prediction is significantly higher than the contribution of

the MeSH Disease terms. GO terms succeed in efficiently prioritizing true

over false drug gene associations, even when little literature information is

provided. In the end, to establish a relation between two terms, the type

and quality of terms play the same or even more important role than the

way this relation is established in the first place (manually or statistically).
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4.3.2 Performance evaluation - Semantic similarity

In the previous Section (4.3.1), the impact of ontological profiles is ex-

amined based on the way the profiles are generated (manually curated or

co-occurrence based) and the type of ontological terms they comprise (GO

or MeSH Disease terms). In this Section the efficacy of nPMI as a statisti-

cal measure of semantic similarity between the profiles will be investigated.

To demonstrate the results of the metrics comparison the datasets Yaman-

ishi, DrugBankApproved and DrugBankExperimental are utilized. The statisti-

cal semantic similarity nPMI is replaced by the metrics Wu-Palmer and

Lin and the efficacy of the algorithm is estimated respectively (see Section

3.2.2). Both ROC and PR curves are provided (Figures 4.10 and 4.11 re-

spectively). Additionally, we plot density distributions between true and

false drug gene associations produced by the algorithm when each one of

the metrics is considered.

nPMI

outperforms

Wu-Palmer

and Lin

As shown in Figure 4.10, nPMI succeeds the highest AUC value in all

datasets under evaluation. Notably, the metrics Wu-Palmer and Lin when

applied on the Experimental dataset perform worse than the random clas-

sifier. Clearly nPMI constitutes the metric of choice when the provided lit-

erature information is limited and sparse, as in the case of the Experimental

dataset. In all graphs, Lin presents slight improvement when compared to

Wu-Palmer most likely due the fact that as a measure it incorporates the

signal each concept carries in the corpus (i.e., Information Content).

The PR graphs shown in 4.11 are in accordance with the behavior of the

metrics as that displayed in the ROC curves. In all datasets, nPMI statis-

tical semantic similarity interrelates drugs to genes and discriminates true

to false drug gene associations with significantly higher Precision for the

whole range of Recall values.

nPMI has the

highest

discriminative

power

To examine the discriminative power of nPMI versus the metrics Lin and

Wu-Palmer, the Probability Density Functions (PDF s) are designed. For

each one of the datasets, given the number of true drug gene pairs, an equal

number of false drug gene pairs is randomly selected from the respective

subset of false drug gene associations. As shown in Figure 4.12, nPMI

succeeds the highest degree of discrimination between the true and false

drug gene pairs in all datasets.
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Figure 4.10: ROC curves for different metrics of semantic similarity

ROC curves plotting the true positive rate against the false positive rate
of each semantic similarity measure on the datasets DrugBankApproved , Drug-
BankExperimental and Yamanishi. The curves show that nPMI outperforms both
Wu-Palmer and Lin. Lin demonstrates slightly better performance than Wu
Palmer due to the incorporation of the concepts’ Information Content.



Chapter 4. Results 75

Figure 4.11: PR curves for different metrics of semantic similarity

The PR curves each metric achieves on the datasets DrugBankApproved , Drug-
BankExperimental and Yamanishi are shown. The curves show that nPMI achieves
higher Precision for all Recall values compared to Wu Palmer and Lin metrics.
Again, Lin demonstrates slightly better performance thanWu Palmer due to the
incorporation of the Information Content of the concepts towards the estimation
of semantic similarity.
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Figure 4.12: Density distributions for different measures of semantic
similarity

The Density distributions of the similarity scores assigned to true and false drug
gene pairs produced by each one of the metrics, are provided for the datasets
DrugBankApproved , DrugBankExperimental and Yamanishi. The vertical red and
blue lines represent the arithmetic mean of the scores for the true and false
drug gene pairs respectively. Clearly, nPMI is the most efficient measure to
discriminate true from false drug gene associations in all datasets. Notably, in
the case of the DrugBankExperimental dataset, Wu-Palmer and Lin completely
fail the task; the mean of false drug gene pairs is greater than the mean of the
scores assigned to true drug gene pairs.
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More specifically, the arithmetic mean of the scores assigned to true drug

gene pairs by nPMI is always greater than the mean assigned to the false

drug gene pairs scores. Moreover, when calculating the difference of the

true to false mean values again nPMI outperforms. Interestingly, when ap-

plied on the DrugBankExperimental dataset, the metrics Lin and Wu-Palmer

completely fail to discriminate true from false drug gene pairs. As shown

in Figure, the mean values for the density distributions of the false drug

gene pairs are greater than the mean values for the density distributions of

the false drug gene associations (for analytical mean values, see Table 7.1

in Supplementary Material).

KS test and

t-test are

concordant

To further assess the discriminative power of each metric of semantic

relatedness, the statistical Student’s t-test is performed. The respective

statistical test computes the probability of the null hypothesis, meaning

the probability that two sets of scores come from the same distribution.

A probability less than 0.05 signifies that the respective metric can dis-

criminate with statistical significance the two distributions. Additionally,

the Kolmogorov-Smirnoff (KS ) statistical test is applied. For both true

and false drug gene association scores, the distance between the respec-

tive Empirical Cumulative Distribution Function (ECDF ) distributions is

computed, according to the KS test. Briefly, the greater the distance be-

tween two ECDF distributions, the higher the discrimination degree be-

tween them. Tables 4.8 and 4.9 collectively report the probability, ECDF

distances and AUC scores for every dataset constituted by drugs and genes

with co-occurrence based or manually curated profiles respectively.

nPMI

outperforms

According to the values reported in Tables 4.8 and 4.9, the statistical sim-

ilarity measure nPMI systematically achieves the highest AUC values in

all datasets, whether co-occurrence based profiles (see Table 4.8) or man-

ually curated profiles (see Table 4.9) are used. Moreover, nPMI manages

to efficiently discriminate true from false drug gene pairs with statistical

significance. Even in the case of the datasets DrugBankExperimental and Ya-

manishi, nPMI achieves the lowest p-value. Additionally, when nPMI is

utilized, the distance between the ECDF distributions of the scores for true

and false drug gene pairs is the highest.

What is the explanation behind nPMI ’s efficacy towards the estimation of
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semantic similarity between drugs and genes? Two are the basic charac-

teristics that differentiate nPMI from the Wu-Palmer and Lin metrics.

nPMI doesn’t

depend on the

structure of

the ontology

First, nPMI is a statistical and fully corpus-based metric which ignores

the structure of the ontology, meaning the relationships between the terms.

When applying nPMI, the concepts that constitute the respective ontology,

are simply treated as a set of terms, i.e., a lexicon, wherein the similarity

between them is estimated solely based on the degree of their co-occurrence

in MEDLINE indexed titles and abstracts. This accounts for the general

applicability of the method across different ontologies and has a positive

impact on the method’s performance. More precisely, the statistical mea-

sure nPMI spots similarities between concepts which are not detected by

any other measure that is based on the hierarchy of the ontology. With

the use of nPMI these pairs of concepts participate in the calculation of

the association score between a drug and a gene. Consequently, this has

a beneficial effect on the recall of the method, since additional drug gene

associations can be suggested.

nPMI

uncovers

hidden

similarities

In particular, nPMI is able to assign a similarity score between GO terms

which belong to different subontologies, e.g., a term from the Biological

Process and a term of the Molecular Function subontology if there is sub-

stancial co-occurrence data. Accordingly, similarity can be computed be-

tween a MeSH Disease and a GO concept. In the cases described above,

the measures Wu-Palmer and Lin would assign a zero similarity score.

Wu-Palmer and Lin would also fail to compute any semantic relatedness

between two MeSH Disease terms wherein the latter is a symptom of the

former. More precisely, let us consider Prader-Willi Syndrome, a congenital

disease affecting many parts of the body. According to the MeSH defini-

tion, the symptoms of this disease include Hypogonadism. A quick look up

in the MeSH hierarchy shows that the Lowest Common Ancestor (LCA)

of Prader-Willi Syndrome and Hypogonadism is the root. Consequently,

both Wu-Palmer and Lin would assign a 0.0 similarity to these concepts,

while nPMI assigns a score of 0.42.

nPMI

prioritizes

hidden

associations

The second characteristic of nPMI is the ability to discriminate concept

pairs based on their frequency. Pairs composed of low-frequency terms

receive a higher score compared to the ones composed of high-frequency

terms (Manning and Schütze, 1999). More precisely, let us consider two
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concept pairs that constitute of concepts that are semantically close, mean-

ing concepts that are close in the ontology tree. If one pair is frequent (and

hence general) and the other pair is rarely found in text, then the latter

is more informative than the former. With the use of nPMI this differ-

ence is captured and represented in the association score between a drug

and a gene. Highly frequent concept pairs contribute less to a drug gene

association score than pairs of lower frequency. This explains why nPMI

performs better than the traditional measures of semantic similarity. Table

4.10 shows an example of this phenomenon.

Table 4.10: nPMI computations - Examples

Pair A Pair B

Coronary

Disease

Myocardial

Ischemia

Kearns-Sayre

Syndrome

Ophthalmo-

paresis

nCd/g
164, 596 55, 757 514 846

nCd,Cg 18, 136 134
distance 1 2
nPMI 0.46 0.71
Wu-Palmer 0.89 0.83

The table reports the difference between the similarity scores assigned by nPMI
and Wu-Palmer on two different concepts pairs. The distance between the con-
cepts which constitute the pairs is reported along with the occurrence and co-
occcurrence values of the terms. nPMI prioritizes the less frequent and hence,
more informative concept pairs.

Assume Cd = Coronary Disease and Cg = Myocardial Ischemia two terms

that participate in the profile of a drug d and a gene g respectively. Ta-

ble 4.10 reports the number of MEDLINE documents where Cd occurs

(nCd
), the number of MEDLINE documents where Cg occurs (nCg), and

the number of MEDLINE documents where Cd and Cg co-occur (nCd,Cg).

It additionally reports the distance of the terms in the ontology tree and

two values of semantic similarity. The nPMI and the Wu-Palmer seman-

tic similarity. Next, assume the pair Cd = Kearns-Sayre Syndrome and

Cg = Opthalmoparesis, for which the respective numbers are also reported.

This example shows that for two pairs of concepts that are semantically
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close, though the number of occurrences and co-occurrences of the first

pair is significantly higher than the respective values of the second pair,

the second pair receives much higher nPMI score. Through this exam-

ple we can observe that the application of nPMI enables the identification

of latent relations between ontological terms that do not necessarily oc-

cur very frequently, as in the case between Kearns-Sayre Syndrome and

Opthalmoparesis where the former is a syndromic variant of the latter.

nPMI prioritizes these pairs in comparison to other frequent and hence

less informative concept pairs.

Conclusively, nPMI is an efficient measure of semantic relatedness between

two ontological concepts. Comparison against the traditional metrics Wu-

Palmer and Lin demonstrates that nPMI has the best performance and

the highest discriminative power. The suggested measure of semantic sim-

ilarity spots associations between two concepts that the other metrics fail

to reveal. Even when suggesting the same concept pairs, nPMI prioritizes

the more informative relations.

4.4 Drug repositioning

Literature

before

repositioning

We manually mine the literature and compile a set of drugs repositioning

cases (see Section 3.2.1.2). Table 4.11 shows the analysis of the application

of the suggested method in identifying new indications for existing drugs.

We focus on the last 5 years and collect the drug repositioning cases that

were approved by FDA and that correspond to drugs for which we have

profiles. The drug profiles are generated based on literature data before

the year of approval of each repositioning case. The table illustrates the

old and new indications for each of the examined drugs along with their

positions in the list of the drugs’ profile terms.

New

indications

rank high in

profiles

As the table suggests, in almost all cases the old indications appear in the

top 3 associated disease terms of the drug. In parallel, the new indications

are always included in the co-occurrence based profiles of drugs among the

top 30 associated disease terms of the respective profiles. To assess the

association between a drug and the respective new incication, 2 types of

z -scores are computed. The first is the z -score the new indication achieves
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inside the profile of the drug. The second z -score corresponds to the overall

distribution of drug-MeSH Disease associations. As shown, themean of the

z -score of an old indication both in the profile of the drug and in the overall

distribution (3.94 and 4.19 respectively) is higher than that of the new

indication (2.02 and 2.41 respectively). This is expectable if we consider

that the old indications of the drugs are more discussed in literature than

the new indications. The results of this analysis suggest CASSANDRA

can be utilized towards the identification of new indications for already

existing drugs.

4.5 Case studies

In the following CASSANDRA’s potential towards drug gene association

prediction and drug repositioning is illustrated via three case studies. In

all three cases, the findings in the scientific literature that support the

proposed associations are provided along with the respective graphical rep-

resentations.

4.5.1 Cathine-GHRL association

In Figure 4.13, all the hypotheses suggesting an association between Cathine

(DrugBank : DB01486) andGHRL (EntrezGene: 51738) are shown. Cathine,

which is a psychotropic compound, is selected because it is among the Drug-

Bank compounds which do not have any target information. Altogether,

11, 302 human genes were ranked against Cathine. GHRL, a gene coding for

the growth hormone-releasing peptide ghrelin, ranks among the top 0.4%

of these genes (position 54) with a z -score of 2.83 and a p-value< 0.05.

Hyperphagia-

Bulimia

Table 4.12 shows representative textual pieces of evidence suggesting this

association which is discovered by CASSANDRA. Cathine and GHRL

are interconnected via the concepts Hyperphagia (MeSH : D006963) and

Bulimia (MeSH : D002032). According to MeSH, Bulimia is a form of Hy-

perphagia. The association emerges as follows: Cathine is isolated from the

plants Catha Edulis and Ephedra Sinica, and acts as a stimulant. It is a

Phenylpropanolamine (PPA) isomer, along with Norephedrine. There exist
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Figure 4.13: Cathine - GHRL

The figure illustrates the intermediate connections of Cathine to GHRL. Clearly,
the most surprising connection is established via the concepts Single Fertilization
and Spermatogenesis that pertain to Reproduction. These concepts are seman-
tically quite distinct from the Eating Disorders concepts to which Cathine and
GHRL have known relations.

several studies reporting the appetite imminent suppressive role of PPA’s

(PMID: 3703896; 7855211). Studies regarding the effects of PPA on dif-

ferent types of Hyperphagias conclude that PPA sufficiently suppresses ap-

petite in hyperphagic rats (PMID: 3310024). All the above support the hy-

pothesis that Cathine suppresses Hyperphagia as an phenylpropanolamine

isomer. As a result, Cathine may also be effective in restraining Bulimia.

In parallel, ghrelin is the only known hunger-stimulating hormone and

is related to several eating disorders including Bulimia Nervosa (MeSH :

D052018) (PMID: 21453750). It is reported that when increasing the levels

of ghrelin via its direct injection into the brain ventricles, the consumption

of rewarding foods in mice and rats increases, as well (PMID: 21354264).

In the same paper it is stated that ghrelin receptor (GHS-R1A) antagonists

show beneficial effects towards the suppression of food intake. In addition,

it is also stated that variations in the GHS-R1A and pro-ghrelin genes have

een associated with Bulimia Nervosa and obesity.

Anorexia
Cathine can also be connected to GHRL via Anorexia (MeSH : D000855).

Cathine’s product information describes the drug as anorexic. It has also

been stated that ghrelin in hypothalamic neurons controls Anorexia and
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Cachexia (MeSH : D002100) (PMID: 22632865). The theurapeutic applica-

tions of ghrelin towards these conditions have been also discussed (PMID:

21635929).

GPCR activity
Moreover, Cathine is involved inG-protein Coupled Receptor Activity (GO :

0004930) (PMID: 17158213), and ghrelin’s receptor is also a G-protein

coupled receptor (PMID: 16382107).

Phosphorylase

Activity

In addition, an increase in the adrenal Phosphorylase Activity (GO : 0004645)

has been observed after the administration of Cathine (PMID: 7903110). In

the same study, it is also reported that the glycogen levels were decreased.

Other studies in tundra vole (Microtus oeconomus) (PMID: 15302267) show

that after the injection of intraperitoneal ghrelin, kidney Glycogen Phos-

phorylase Activity (GO : 0008184) increased, whilst kidney glycogen levels

decreased. The above suggests similar responses after ghrelin’s or Cathine’s

administration.

Unexpected

relation to

Reproduction

The last connection is a surprising one, since it is formed via the concepts

of Single Fertilization (GO : 0007338) and Spermatogenesis (GO : 0007283).

Both concepts pertain to reproduction. Studies in incapacitated mouse

spermatozoa, markedly demonstrate that cathine significantly accelerates

capacitation (PMID: 15513978; 17158213). Additionally, observations in

normal adult rats suggest ghrelin’s modulative role in Spermatogenesis

(PMID: 22360851;22658447).

Conclusively, all the described links above account for the hypothesis that

Cathine and GHRL are associated. Although, both the drug and the gene

are known to be related to Eating Disorders, their association is intensified

by the discovery of a new intermediate connection that exists between them;

the connection pertaining to Reproduction.

4.5.2 Fenethylline-ApoE association

The second example suggests a connection between the gene ApoE and the

drug Fenethylline (Figure 4.14 and Table 4.13 give the respective overview).

ApoE ranks among the top 5 in the ranked list of 11, 302 Human genes with

a z -score of 4.27 and a p-value< 0.05.
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Table 4.12: Cathine-GHRL textual findings

Relation Textual Evidence

Cathine is also called PPA Cathine, ... is one of the optical isomers of
phenylpropanolamine (PPA), Wikipedia

PPA suppresses hyperphagia PPA is capable of suppressing appetite in
rats made hyperphagic by various stimuli
(PMID:3310024)

Bulimia is an Hyperphagia MeSH

Ghrelin is involved in bulimia Ghrelin increases food intake ... rele-
vance in the regulation of bulimia nervosa
(PMID:21453750)

Cathine is an anorexic drug Product Information

Ghrelin controls cachexia Ghrelin in concert with hypothalamic
neurons control anorexia and cachexia
(PMID:22632865)

Cathine affects phosphorylase
activity

After the administration of cathine, an increase
in the adrenal phosphorylase activity has
been observed (PMID:7903110)

Glycogen phosphorylase activ-
ity is a phosphorylase activity

Gene Ontology

Ghrelin affects Glycogen phos-
phorylase activity

After the injection of intraperitoneal ghrelin ,
kidney glycogen phosphorylase activities
increased (PMID:15302267)

Cathine affects adrenergic re-
ceptors

Regulation of adenylyl cyclase/cAMP in a
G protein-mediated fashion by cathine
may possibly involve adrenergic receptors
(PMID:15513978)

Adrenergic receptors are G-
protein coupled receptors

Gene Ontology

Ghrelin ’s receptor is aG-protein
coupled receptor

Growth hormone secretagogue receptor is a G-
protein coupled receptor that binds ghrelin
(PMID:16382107)

Cathine boosts single fertiliza-
tion

Cathine can enhance chances of fertilization
in vivo (PMID:17158213)

Single fertilization and sper-
matogenesis pertain to reproduc-
tion

Gene Ontology

Ghrelin modulates spermatoge-
nesis

Ghrelin may be considered as a modulator of
spermatogenesis (PMID:22360851)
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Figure 4.14: Fenethylline-ApoE

The figure shows the intermediate connections of Fenethylline to ApoE. Both the
drug and the gene are strongly related to cardiovascular conditions, which are
expressed either as conditions directly related to heart diseases or as conditions
affecting the retinal area.

Fenethylline is a stimulant compound and has been used for the treatment

of Hyperkinesia and depression (PMID: 23420919). When metabolised is

forming the substances Amphetamine and Theophylline (PMID: 5496920).

Apolipoprotein E is a mediator of liver endocytosis and it has been char-

acterised as a major genetic risk factor for Alzheimer’s disease (PMID:

22622580).

Retinal Vein

Occlusion -

Macular

Edema

The first hypothesis is formed via the interrelated concepts Retinal Vein

Occlusion (MeSH: D012170) and Macular Edema (MeSH: D008269). Ac-

cording to the respective MeSH definition Retinal Vein Occlusion is the

condition describing the blockage of the retina. It is a high risk condition

for patients with Diabetes or several cardiovascular diseases. Three cases

of hemorrhagic central Retinal Vein Occlusion following continuous uses

of Fenethylline have been reported (PMID: 20214057). In the same study

is also stated that after the discontinuation of the drug, the symptoms

markedly withdrew. Following the MeSH definitions, Macular Edema is

the accumulation of fluid or protein around the macula of the eye and it is

oftenly seen with retinal occlusive diseases (PMID: 23410812; 22823029).

Besides, another study characterises the APOE gene polymorphism as a

risk factor for the severity of Macular Edema (PMID: 11910554).

Thrombosis-

Hyperhomo-

cysteinemia

Secondly, two more concepts relate Fenethylline to ApoE. As it has been

already mentioned, Fenethylline forms Amphetamine which is associated

with Arterial Thrombosis (MeSH : D013927) (PMID: 20118172). Results
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prove that Hyperhomocysteinemia (MeSH : D020138) is the most common

condition that is highly associated with both Venous and Arterial Throm-

bosis (PMID: 22933895). Generally, there has been a long-recognized con-

nection between high levels of Homocysteine (Hyperhomocysteinemia) and

Thrombosis (PMID: 22461473). Concomitantly, another study suggests

that ApoE4 (one of ApoE ’s isoforms) is related to Hyperhomocysteine-

mia (PMID: 17158432). Moreover, in scientific literature null-ApoE mice

are extensively used in the study of Hyperhomocysteinemia effects (PMID:

22704348; 23017835; 20696152).

Adding it together, the above information suggests a putative association

between Fenethylline and the processes wherein the gene ApoE is involved.

4.5.3 Milnacipran-SLC6A4 association

The following case study represents the repositioning potential of CAS-

SANDRA. It describes the known association between the drugMilnacipran

(DrugBank : DB04896) and the gene SLC6A4 (Entrez Gene: 6532), which

codes forMilnacipran’s known target, serotonin transporter (SERT ). SERT

ranks at the top (1st) of the list of 11, 302 Human genes with a z -score of

4.48 and a p-value< 0.05.

Milnacipran is a serotonin-norepinephrine reuptake inhibitor (SNRI ) ini-

tially approved for the treatment of Depression (MeSH : D003863) (1996).

In January 2009 Milnacipran was also approved for the treatment of Fi-

bromyalgia (MeSH : D005356). The SLC6A4 gene codes for the serotonin

transporter, which is the target protein of many antidepressant medica-

tions and whose polymorphic region is associated with a variety of anxiety-

related traits and susceptibility for Depression (PMID: 17726476).

Figure 4.15 shows the suggested connections and Table 4.14 summarizes

the textual pieces of evidence that support them. The connections are

generated from MEDLINE abstracts and articles published before 2009,

when Milnacipran was repositioned to Fibromyalgia.

Serotonin

Uptake

Regulation

The first connection is formed via the interrelated concepts of Inhibition

of Serotonin Uptake (GO : 0051614) and Regulation of Serotonin Uptake

(GO :0051611). Milnacipran belongs to the class of SNRIs. SNRIs increase
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Figure 4.15: Milnacipran-SLC6A4

The figure demonstrates the indirect connections for the known association Mil-
nacipran to its target-coding gene SLC6A4. The connections are generated from
data published before 2009. As shown, Fibromyalgia, a condition to which Mil-
nacipran was repositioned after 2009, participates in the establishment of the
respective association.

the levels of serotonin, by blocking SERT which is responsible for the

Regulation of Serotonin Uptake.

Fibromyalgia
The second concept relatingMilnacipran to SERT is Fibromyalgia (MeSH :

D005356). Several articles describe clinical trials and report the efficacy of

Milnacipran in the treatment of Fibromyalgia more than 4 years before

the compound has been approved for use against that condition (PMID:

15378666; 16206355). Other reports confirm that the polymorphic region

of SLC6A4 is associated to Fibromyalgia (PMID:11920428;10555044).

Bulimia &

IBS

Moreover, Milnacipran may have a beneficial effect in the treatment of Bu-

limia nervosa (PMID: 12650949; 18728825). Several articles also state the

association of SERT polymorphisms to eating disorders and in particular

to Bulimia nervosa (PMID: 20209488; 14987118; 12768277). The last con-

nection is formed via the concept Irritable Bowel Syndrome (IBS, MeSH :

D043183 ) which is a condition co-morbid with Fibromyalgia. Experiments

conducted in rodents show that Milnacipran has a potential in the treat-

ment of IBS (PMID: 21996314). Other studies suggest that SLC6A4 is

a candidate gene potentially involved in the pathogenesis of IBS (PMID:

22457857; 23594334).
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The above pieces of evidence confirm that the proposed methodology in-

cludes in the prediction of drug gene associations medical conditions that

can be considered as repositioning candidates.

Table 4.13: Fenethylline-ApoE textual findings

Relation Textual Evidence

Fenethylline causes retinal vein
occlusion

...3 cases of hemorrhagic central textbfretina
textbfvein textbfocclusion following continuous
use of textbffenethylline (PMID:20214057)

Macular edema is associated
with retinal vein occlusion

...treatment of macular edema associated
with central retinal vein occlusion...
(PMID:22823029)

Macular edema is affected by
ApoE

...allele of apolipoprotein E gene is a potential
risk factor for the severity of macular edema...
(PMID:11910554)

Fenethylline forms am-
phetamine

Fenethylline, when metabolised is forming the
substances theophylline and amphetamine,
(PMID:5496920)

Amphetamines increase arte-
rial thrombosis incidence

Amphetamines induce tissue factor ... arterial
thrombosis is in turn triggered by tissue factor
(PMID:20118172)

Arterial thrombosis is resonsi-
ble for hyperhomocysteinemia

Hyperhomocysteinemia proves to be the
most common condition highly associated
with both venous and arterial thrombosis
(PMID:22933895)

Hyperhomocysteinemia is re-
lated to ApoE

Apolipoprotein E e4 allele affects risk of hy-
perhomocysteinemia (PMID:17158432)
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Table 4.14: Milnacipran-SLC6A4 textual findings

Relation Textual Evidence

Milnacipran is a serotonin-
norepinephrine reuptake in-
hibitor

Wikipedia

Inhibition of serotonin uptake
is a regulation of serotonin up-
take

Gene Ontology

SERT is responsible for the reg-
ulation of serotonin uptake

Wikipedia

Milnacipran cures fibromyalgia In this Phase II study, milnacipran led
to statistically significant improvements in
pain and other symptoms of fibromyalgia
(PMID:16206355)

SLC6A4 polymorphism is related
to fibromyalgia

Confirmation of an association between fi-
bromyalgia and serotonin transporter pro-
moter region polymorphism (PMID:11920428)

Milnacipran treats bulimia ner-
vosa

Milnacipran in the treatment of bulimia ner-
vosa: a report of 16 cases. (PMID:12650949)

SLC6A4 polymorphism is related
to bulimia nervosa

The serotonin transporter, encoded by the
SLC6A4 gene, may also have an important
role in eating disorders, as its availability is
decreased in patients with bulimia nervosa...
(PMID:14987118)

Milnacipran treats Irritable
Bowel Syndrome

...milnacipran has potential clinical applica-
tion in the treatment of visceral pain, such as in
irritable bowel syndrome... (PMID:21996314)

SLC6A4 is a biomarker of Irri-
table Bowel Syndrome

...suggesting that SLC6A4 is a potential can-
didate gene involved in the pathogenesis of Ir-
ritable Bowel Syndrome. (PMID:22457857)



Chapter 5

Discussion

This Chapter discusses the outcome of the current study. The implemen-

tation decisions taken for the realization of the task at hand are explained.

CASSANDRA is compared against other methodologies of Literature

Based Discovery and drug gene association prediction. More specifically,

the following are discussed

• How does CASSANDRA differentiate from the rest of the method-

ologies implemented towards drug gene association prediction?

• Why focusing on Literature Based Discovery? How is CASSAN-

DRA contributing to the field?

– Why utilizing titles and abstracts is sufficient?

– What are the advantages of co-occurrence?

• The role of ontologies; why GO and MeSH Disease terms?

– What is the impact of the statistical semantic similarity mea-

sure? Which measure is the most appropriate?

93
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Overview of

CASSANDRA

In this work we introduce CASSANDRA; an algorithm for the automated

extraction of candidate drug gene associations from biomedical text on the

large scale. CASSANDRA combines standardized text mining techniques

and biomedical ontologies. It constitutes an unsupervised approach that

predicts new drug gene associations solely by systematically analysing the

co-occurrence of biomedical terms in the scientific publications indexed by

MEDLINE.

More specifically, drug and gene names are obtained from the popular and

well-established repositories DrugBank and UniProtKB respectively. The

ontological terms belong to the widely used terminologies Gene Ontology

(GO) and Medical Subject Headings (MeSH ). The proposed algorithm uti-

lizes the Pointwise Mutual Information (PMI ) to rank the most related

GO and MeSH Disease concepts to the drug and the gene respectively.

These concepts form an individual profile for each drug and gene. Then,

by quantifying the statistical semantic relatedness between these profiles,

CASSANDRA assesses and prioritizes the associations between drugs and

genes. The degree of semantic similarity between a drug and a gene profile

signifies the strength of their association.

Results

overview

CASSANDRA successfully identifies direct drug gene associations with

high precision and prioritizes them over indirect associations (i.e., associ-

ations wherein the drug affects a certain gene product without necessarily

binding physically to it). Validation shows that the algorithm achieves

an Area Under the Curve (AUC ) up to 0.88 for a dataset consisting of

Approved drugs and Human genes. Additionally, the statistical analysis

demonstrates that the proposed semantic similarity metric is more efficient

compared to traditional measures towards the discrimination of true from

false drug gene associations.

Co-occurrence

based profiles

are efficient

The use of co-occurrence based profiles doesn’t at all affect the perfor-

mance of the algorithm. On the contrary, the results show that profiles

of ontological terms generated from co-occurrence based statistics have

a comparable and, at times better, performance than the manually cu-

rated profiles. Evidently, the generated profiles can provide an insight into

biomedical properties for drugs and genes and contribute to the inference of

associations that might not have been included in a database nor explicitly

reported in the literature.
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Disease-based

drug

repurposing

Notably, CASSANDRA can support drug repurposing not only in a tar-

get based fashion (meaning to propose new genes related to drugs), but also

in a disease-based fashion. Indicatively, for all FDA approved drugs repo-

sitioned over the last 5 years, co-occurrence based profiles were generated

from publications before 2009. The analysis shows that the new therapeu-

tic indications are always included in the profiles and rank relatively higher

than the rest of the conditions.

5.1 Drug gene association prediction

Significant

differences

from

traditional

methods

In Table 2.3 we provide an overview of methodologies implemented for

drug gene association prediction. Evidently, CASSANDRA significantly

deviates from traditional drug gene association prediction. The proposed

algorithm is among the very few unsupervised methodologies utilized for

this task. As shown, it is also among the very few approaches that apply

drug gene association prediction on the large scale. Instead of learning from

structural and sequence similarity of drugs and genes respectively, CAS-

SANDRA utilizes ontologies and literature data. One major advantage is

that, unlike other methods, CASSANDRA doesn’t require existing drug

target information to predict a new associated gene for a drug.

Training

independence

Due to the unsupervised nature of CASSANDRA, the method needs no

training data. This is particularly advantageous in the case of drug gene

association prediction, wherein the lack of benchmark datasets poses a sig-

nificant problem. In fact, there is only one benchmark dataset introduced

by Yamanishi et al. on 2008. Since then, the respective dataset has been

the predominant means to cross-compare the mainly supervised methods

implemented towards drug-target interaction prediction. The works van

Laarhoven and Marchiori (2013), Fakhraei et al. (2013) and Gönen (2012)

are just a few examples.

Dataset

independence

However, the limitation of such dataset is that it contains only true-positive

drug target interactions. The negative interactions are generated by the

pairwise combination of all drugs and targets contained in the true-positive

dataset, as it has been also the case for the evaluation datasets generated

within this study. That is the Achilles’ heel in machine learning approaches.
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In the end, the models learn only from positive data, since there is no way

to obtain and hence train a classification model over true-negative drug

target interactions (Pahikkala et al., 2014; Ding et al., 2013). As a matter

of fact, it is such the dependence of some methods on the training dataset

that they are unable to predict a drug target interaction between a drug

and target that do not have already known interaction information with

other targets and drugs respectively. Alaimo et al. (2013), Cheng et al.

(2012a), Laarhoven et al. (2011) and Yamanishi et al. (2010) constitute

representative examples of such methodologies. CASSANDRA, on the

other hand, remains independent of the dataset features; apart from its

unsupervised implementation, the proposed algorithm focuses on the pri-

oritization of drug gene associations rather than their binary classification

to true and false drug-target interactions. All drug gene pairs are assigned a

score which represents the strength of the association, regardless of whether

the drug or the gene already participate in known drug target interactions.

Scalability
An additional advantage stems from CASSANDRA’s unsupervised im-

plementation. The algorithm is able to process massive literature data and

predict drug gene associations on the large scale. On the other hand, su-

pervised large scale classification is an increasingly Big Data problem and

so far little has been published towards the practical resolution of this is-

sue (Sun et al., 2014). It has been shown that the performance of Support

Vector Machine classification on large-scale taxonomies is ”far from satis-

factory” (Liu et al., 2005). In methods applying the Bipartite Local Model

(BLM ) (e.g., Alaimo et al. 2013, Yu et al. 2012, Perlman et al. 2011) or

the Pairwise Kernel Method (PKM ) (e.g., Takarabe et al. 2012, Jacob and

Vert 2008) this issue is intensified (Ding et al., 2013). That explains why

the majority of the supervised methods addressing drug target prediction

focus on the readily available yet size-restricted dataset of Yamanishi et al.

(2008).

Current

supervised

methods are

overoptimistic

The outbreak of machine learning approaches towards drug target predic-

tion received the notice of Pahikkala et al. (2014), who in a recent study

examine the quality of the respective methodologies. Pahikkala et al. claim

that the striking performance of these methods is unrealistic. They suggest

that the problem of drug target interaction prediction should be formu-

lated as a prioritization problem rather than a binary classification prob-

lem. They also state that the currently used evaluation datasets are not
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appropriate for the task at hand and they propose the use of biochemical se-

lectivity assays. Moreover, they experimentally demonstrate 2 more factors

that dramatically affect the prediction results of several supervised learning

studies (e.g., Mei et al. 2013, Laarhoven et al. 2011). The former pertains

to the evaluation procedure; they show that simple cross-validation leads

to overoptimistic performance. Lastly, they pinpoint the bias between the

training and test sets, meaning the common shared drugs, targets or drug

target interactions.

Even so, such an overoptimistic viewpoint towards the evaluation procedure

can be found in unsupervised methodologies, as well. Although elementary

and on an early stage, the approach of Plake (2010) constitutes a repre-

sentative example. The idea shares common ground with CASSANDRA

but fails to produce meaningful drug gene associations mainly because it

applies no filtering on the concepts that form the associations between

drugs and genes. Most importantly, in this work, drug gene association

prediction is evaluated only on an in-house built dataset which includes

a 70% percent of zero-scored drug gene associations. Consequently, the

proposed method shows an exceptional performance. However, when ap-

plied on other datasets the method’s efficacy drops dramatically. Already,

in Section 4.3.1.1 we show how influencing is the inclusion of zero-scored

associations when assessing the algorithm’s efficacy. The quality of the

evaluation dataset is indeed an issue that requires particular consideration.

Taking all the above into account, it is evident that CASSANDRA con-

stitutes a robust method towards drug gene association prediction. This is

also corroborated in Section 4.3.1.1, wherein the efficacy of the algorithm

is assessed by its application on a series of differentiated datasets. The

formulation of the problem as a prioritization task proves to be more re-

alistic towards drug gene association prediction. CASSANDRA doesn’t

depend on training and test data, hence it remains bias free. Lastly, follow-

ing an unsupervised methodology enables to perform drug gene association

prediction on the large scale.
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5.2 Exploring the literature

Hidden

information

Biomedical literature constitutes a valuable source of information. How-

ever, it remains unexplored mainly due to its vast volume. With more

than 400, 000 articles published every year, the task to stay current with

the literature could easily occupy 75% of a scientist’s working day (Cheng

et al., 2008). Investigating hidden associations in the plethora of relation-

ships reported in scientific articles could be considered easily as searching

a needle in the haystack. Still, it is highly significant to leverage from that

information that is usually not yet included in biomedical repositories. The

latter is exactly acknowledged by the very concept of Literature Based Dis-

covery and by the variety of tools developed towards the automation of

this procedure (see Table 2.1).

CASSANDRA focuses on Literature Based Discovery, the (semi)-automatic

inference of implicit knowledge out of literature (Weeber et al., 2005). The

serendipitous discovery of Swanson that related Fish Oil to Raynaud’s

Syndrome (Swanson, 1986) remains the core motivation basis of CAS-

SANDRA. The algorithm projects this approach to drug gene association

prediction and attempts the systematic and automated retrieval of relevant

hypotheses from the biomedical literature.

Expanding the

ABC model

Unlike existing tools in the domain of Literature Based Discovery (see

Table 2.1), CASSANDRA takes a step further and deviates from the con-

ventional ABC model by incorporating the notion of two intermediate, yet

similar concepts B. As stated in Cameron et al. (2013), relevant information

may exist in longer chains of concepts semantically connected. CASSAN-

DRA generates such longer chained hypotheses and ranks them towards

the identification of indirectly connected drugs and genes that would be

difficult to uncover without computational assistance or prior knowledge.

Harnessing

ontologies

Additionally, CASSANDRA is one of the Literature Based Discovery

methods that fully utilize ontologies. As shown in Table 2.1, ontologies,

although constituting useful and controlled vocabularies, are not exten-

sively used towards the establishment of hypotheses. Most of the tools im-

plemented use their in-house defined terminologies and this hinders their

general applicability. CASSANDRA uses ontologies to explore the liter-

ature and more precisely, it systematically applies the whole range of GO
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and MeSH Disease terms towards the establishment of hypotheses pertain-

ing to drug and gene relations. An additional feature that differentiates

CASSANDRA from the majority of Literature Based Discovery tools is

the statistical refinement of the associations that establish the drug gene

predictions. Besides using a probabilistic tool (i.e., nPMI ) to establish

these associations, CASSANDRA applies a further filtering to insure the

quality of the generated hypotheses.

Few

literature-based

approaches

Moreover, CASSANDRA constitutes one of the few methods that solely

utilize the biomedical literature to generate drug gene association predic-

tions (see Table 2.3). Zhu et al. (2005) learn from gene-gene, compound-

compound and gene-compound co-occurrence data in a preselected set

of MEDLINE abstracts and suggest implicit compound-gene associations.

Wu et al. (2012) collect drug gene co-occurrence data on a subset of MED-

LINE abstracts and utilize Latent Dirichlet Allocation to prioritise them.

However, both methodologies do not attempt a large scale drug gene as-

sociation prediction. Indeed, only a small subset of MEDLINE records is

used in each case (∼ 0.4% and 1.0% respectively). In the study of Zhu

et al. (2005) this is somewhat explainable, since supervised approaches are

generally difficult to scale (Wang et al., 2008). Additionally, Wu et al.

(2012) focus on the prioritization of directly co-occurring drugs and genes,

while CASSANDRA excludes such pairs and focuses on the prediction of

indirectly related drugs and genes.

Prediction for

all drugs and

genes

Utilizing the biomedical literature lends CASSANDRA an additional im-

portant feature. Unlike several mainly supervised strategies towards drug

target interaction prediction, CASSANDRA is able to provide ranked lists

of associated genes for drugs with no known targets and ranked lists of as-

sociated drugs for non-coding (or at least reported as such) target genes.

Of course, the only prerequisite is that the existing literature enables the

generation of statistical significant co-occurrence based profiles for these

drugs and genes.

5.2.1 Focusing on abstracts and titles

When it comes to text mining applications the arising question is: ”Which

text to mine?” CASSANDRA utilizes co-occurrence data fromMEDLINE
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indexed abstracts and titles. Notably, there are many tools utilizing the

same resource towards the extraction of biomedical information (Gijón-

Correas et al., 2014; Kim et al., 2013b; Fontaine et al., 2011; Frijters et al.,

2010). The main reason for that is their public accessibility (Vincze et al.,

2008). Only ∼ 2% of MEDLINE entries have open-access full-text articles

available for text mining (Thomas et al., 2012).

Abstracts

deliver

information

Another reason is that the experimental procedures or results described

in full-text articles are hard for researchers to re-use (Névéol et al., 2011).

In a recent study, Fontelo et al. (2013) also state that abstracts appear to

be equally informative as full-text articles. Most importantly, it has been

demonstrated that text mining tools perform better in abstracts than on

article bodies (Cohen et al., 2010b). This can be possibly attributed to the

fact that, unlike full-text articles, abstracts contain less hedgy sentences

(Fontelo et al., 2013), and state clearly the respective research findings

(Jenssen et al., 2001). All the arguments stated above opt for the use

of abstracts over full-text articles. Still, this doesn’t necessarily rule out

the additional use of full-text articles by the suggested methodology in the

future.

5.2.2 Using co-occurrence

Co-occurrence is often applied in biomedical relation extraction and par-

ticularly in Literature Based Discovery (Paik et al., 2014; Cheung et al.,

2013; Tsuruoka et al., 2011; Frijters et al., 2010; Yildiz and Pratt, 2006).

Another way to establish such relations would be the use of predefined

or automatically derived rule/patterns (Chang et al., 2012; Cou, 2010).

Currently, both strategies are used towards the extraction of biomedical

relations, either individually or combined (Xu and Wang, 2014). The pro-

posed algorithm utilizes co-occurrence based statistics to establish relations

between the biomedical terms on the large scale.

Co-occurrence

is meaningful

Usually, the main argument against the use of co-occurrence based statis-

tics is the quality or even existence of the returned associations in the

first place (Zweigenbaum et al., 2007). However, the analysis conducted

within this study suggests otherwise. The quality of the relations generated

is comparable to the quality of manually curated associations. As it has
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been shown (Chapter 4, Section 4.3.1.3) ontological profiles for genes and

drugs derived from textual co-occurrence demonstrate equal or at times

better performance than manually curated profiles. Similar is the finding

of Garten et al. (2010). The authors replace a manually curated drug gene

association network with a co-occurrence derived network and show that

the performance of their algorithm remains the same or even improves at

certain cases.

In an early study, Jenssen et al. (2001) build a gene-gene relationship net-

work by weighting the co-occurrences of gene-gene pairs in MEDLINE ab-

stracts. They state that the co-occurrences of biological entities in scientific

abstracts do reflect meaningful relationships, due to the condensed infor-

mation and clear statements of the research findings they contain. A recent

work also demonstrates that abstract level co-occurrence stronly correlates

with sentence level co-occurrence (Niu et al., 2010). Zhu et al. (2005)

attribute any false positive co-occurrence relationships to the errors intro-

duced by the Name Entity Recognition (NER) systems.

Underepresented

negative

associations

The co-occurrence degree is also proved to be correlated with the quality

of the association (Jenssen et al., 2001). Moreover, another study shows

that less than 10% of the sentences ”contains a modifier that radically influ-

ences the semantic content of the sentence”, meaning a hedgy expression

or a negation (Vincze et al., 2008). These facts explain why the perfor-

mance of CASSANDRA is hardly affected by any false positive relations

detected. Given that the negative associations are underepresented in lit-

erature (Pérez et al., 2004) and therefore would result to a low nPMI score,

no relevant filtering is necessary.

Co-occurrence

has high recall

Another reason for applying co-occurrence based statistics is their high

recall (Zweigenbaum et al., 2007). That is why, when combined with other

methodologies, there is a significant boost in the performance. Indicatively,

Aubry et al. (2006) demonstrate that introducing co-occurrence statistics

between genes and GO terms radically improves the gene functional anno-

tation. Seki and Mostafa (2007) build a network of genes, MeSH and GO

terms to discover indirect associations between genes and diseases. When

integrating textual co-occurrence from MEDLINE abstracts, the system’s
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predictive power improves by 4.6%. Thereafter, co-occurrence based statis-

tics are at this point preferred over the supervised or not use of predefined

patterns/rules for the extraction of relationships between biomedical terms.

Scalability
Moreover, it is easier to apply co-occurrence methods on the large scale.

Using a mathematical schema to model co-occurrences is definitely more

straightforward than the application of pattern based stategies. Clearly,

the generation of patterns (especially when this is conducted manually)

is a laborious task (Huang et al., 2004). Additionally, it requires thor-

ough study of the respective domain. For example, in this study, were

for pattern-based approaches to be followed, 7 different syntactic patterns

would have to be generated corresponding to the 7 different types of rela-

tions, i.e., drug/gene-MeSH Disease, drug/gene-GO, MeSH Disease- MeSH

Disease, MeSH Disease-GO and GO- GO patterns. On the other hand,

co-occurrences are generally applicable (domain-independent) and need no

text-preprocessing (Zweigenbaum et al., 2007).

Type of

relation

Of course, co-occurrence based strategies do not provide the type of re-

lation and that is another argument against their usage. Indeed, when

focusing on first-order relation extraction (i.e., the relation between a term

A and a term B), it might be interesting to know the exact type of relation.

However, for second-order relation extraction (i.e., the ABC model) strate-

gies, such asCASSANDRA, even if the relations are known, they still have

to be concordant so as to generate a consistent hypothesis. In other words,

in both cases the hypotheses have to be further analyzed. However, in the

case of CASSANDRA nPMI already prioritizes the stronger hypotheses

and this significantly facilitates the procedure.

To sum up, co-occurrence based statistics have high recall, they are rela-

tively easy to apply on the large scale, they are domain-independent and

the associations they suggest do reflect meaningful relations between the

biomedical entities (Jenssen et al., 2001). The latter is also demonstrated

by the results of this very study; co-occurrence based profiles show a com-

parable or at times better performance than the manually curated profiles.

For these reasons, co-occurrence based statistics were at this point chosen

over the generation of syntactic patterns or rules towards the extraction

of relations. Still, we think that the two approaches are complementary
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and consider the use of patterns towards the refinement of drug gene as-

sociation hypotheses generated by CASSANDRA. Indicatively, there are

several works combining the two methodologies towards an enhanced qual-

ity of results (Xu and Wang, 2014; Bunescu et al., 2006).

5.3 The role of ontologies

Ontologies have a critical role in the representation of knowledge and the

dissemination of data in the biomedical domain. They are widely used in

data indexing and information retrieval (Whetzel et al., 2011), but also in

data integration and reasoning (Ashburner et al., 2000; Magka et al., 2014).

Therefore, it is fitting to utilize ontologies for connecting islands of drug

and gene data, as it is the task of this study. The arising question is which

is the most appropriate ontology for this task?

Why GO?
There is a plethora of biomedical ontologies of varied granularity and ded-

icated to different biomedical subdomains, (e.g., Barton et al. (2014) or

Zheng et al. (2013). Still, for the task at hand the goal is to focus on

the ontological terms that would be adequate to efficiently describe drugs

and genes, capture their functional properties and hence, ensure the suc-

cessful estimation of similarity between their profiles. In the case of genes

the decision is quite straightforward regarding the use of Gene Ontology

(Ashburner et al., 2000). Gene Ontology is an extensively used terminol-

ogy that addresses the need for consistent descriptions of gene products

across databases. It encompasses terms that represent biological processes,

cellular components and molecular functions. Obviously, these terms can

be used to build the context that encloses the processes and functionalities

which relate to drugs.

Why MeSH?
Evidently, drugs and genes are strongly related to diseases. Hence, the

use of terms stemming from a medical vocabulary, such as Medical Subject

Headings (MeSH ), is also suitable for their description. MeSH constitutes

a widely accepted use case of a clinical controlled vocabulary. It is manu-

ally curated, regularly updated and it is used to index the articles stored in

MEDLINE. Unlike other terminologies (e.g., LOINC or GALEN ), MeSH

is suitable for the task at hand because it focuses and has proven to be
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particularly successful towards medical literature retrieval (Nelson, 2009).

SNOMED CT, on the other hand, which is another popular terminology,

focuses on the representation and encoding of clinical data for the Elec-

tronic Health Records (EHR). Moreover, it contains concepts with subtle

differences in meaning which are difficult to discriminate (Chiang et al.,

2006). This can be partially attributed to post-coordination, meaning that

a concept can be coded by a coordination of different codes (Stevens and

Sattler, 2013). Although post-coordination confers a dynamic structure in

SNOMED CT, it also results in many ambiguous and context-dependent

concepts, the resolution of which requires the application of reasoning sys-

tems. MeSH, on the other hand, is a static terminology of readily available

terms.

Why only

Diseases?

MeSH contains 16 trees overall and more than 27, 000 terms (descrip-

tors). Apart from the Diseases tree, MeSH includes categories such as

Phenomena and Processes, Information Science, Publication Characteris-

tics, Geographicals or Disciplines and Occupations. The majority of them

is not relevant and, thus, constitutes a source of error for text mining. On

the other hand, GO is also large, but entirely focused on the biological

processes and functions. For that reason, GO was fully used, whilst from

MeSH only the Diseases tree was utilized.

GO

outperforms

MeSH

Diseases

Clearly, the application of MeSH Diseases and GO terms has proven suc-

cessful towards the drug gene association prediction from literature, as

shown by the overall performance of CASSANDRA (Chapter 4). More

specifically, GO successfully discriminates true from false drug gene asso-

ciations even when the literature for the respective entities is limited (see

Section 4.3.1.1). Co-occurrence based profiles containing GO terms also

perform better than manually curated MeSH Disease profiles, illustrating

that the type of terms plays a significant role towards the establishment of

associations. But what is special about GO terms? GO is entirely dedi-

cated to the sufficient and accurate representation of genes, gene products

and their attributes. Hence, the terms included in GO are by nature highly

descriptive and precise. MeSH Diseases, on the other hand, constitute con-

cepts of a broader perspective, i.e, a disease encompasses a set of functions,

processes, signs and symptoms to which many drugs and genes could be

associated. That difference between the two terminologies is reflected on

the algorithmic performance.
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5.3.1 Estimating the semantic similarity

The means to estimate the semantic relatedness between a drug and a

gene ontological profile is critical towards assessing the strength of the drug

gene association. Hence, which is the most appropriate semantic similarity

metric for the task at hand?

CASSANDRA utilizes the statistical semantic similarity, meaning the

normalized Pointwise Mutual Information (nPMI ). nPMI is a fully corpus-

based, probabilistic measure that treats the ontological concepts just as

a set of terms. The similarity between two concepts is estimated solely

based on the degree of their co-occurrence in MEDLINE indexed titles and

abstracts.

Ontology

independence

One major advantage of nPMI over other similarity metrics is its general

applicability. Several metrics are built to explicitly identify relations be-

tween terms of a specific ontology (e.g., GO as in Yang et al. 2012; Jain and

Bader 2010). For example, Wang et al. (2007) propose a metric wherein

they exploit the GO is part of and is a relations. On the contrary, nPMI

is ontology-independent and can be applied on both MeSH Diseases and

GO terms or any other ontologies incorporated in the algorithm in the

future.

Capturing

latent relations

To assess the efficiency of nPMI , we compared the metric to two tra-

ditional measures of semantic similarity, i.e., Wu-Palmer (1994) and Lin

(1998). As shown in the results (Chapter 4, Section 4.3.2) nPMI demon-

strated the best performance, in terms of Area Under the Curve, Precision-

Recall and discriminative power. Unlike the Wu-Palmer and Lin metrics,

nPMI can capture the similarity between terms that belong to different

subontologies or even different ontologies, e.g., terms from GO Biologi-

cal Process and GO Molecular Function or GO and MeSH Disease terms.

Furthermore, the application of nPMI enables the identification of latent

relations between ontological terms that do not necessarily occur very fre-

quently in text. This is of particular importance, since the goal of CAS-

SANDRA is to uncover the hidden information that lies behind unknown

drug gene associations.





Chapter 6

Conclusion

This chapter discusses the contribution and future directions of CASSAN-

DRA. It summarizes the important findings of this study and proposes

certain steps towards the improvement and expansion of the suggested

methodology.
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6.1 Contribution

The current thesis introduces CASSANDRA. An unsupervised corpus-

based algorithm that addresses the prediction of drug gene associations

from literature. The algorithm is an extended version of traditional Litera-

ture Based Discovery. It explores the biomedical literature and interrelates

drug to genes via intermediate ontological concepts.

In a nutshell,

• 23, 487, 871MEDLINE abstracts and titles were annotated with drugs,

genes, GO and MeSH Disease terms

• co-occurrence based profiles were precomputed for 2, 837 drugs and

57, 395 genes

• 5 new drug gene association datasets were compiled to systematically

assess the algorithm’s efficacy

• overall 37, 603, 728 distinct drug gene associations were scored

Use of nPMI
The method generates co-occurrence based concept profiles for both drugs

and genes. Normalized Pointwise Mutual Information (nPMI ) is used to

create the profiles by finding statistical significant associated ontological

terms in MEDLINE titles and abstracts. nPMI is also utilized as measure

of semantic similarity to estimate the relatedness between drugs and genes

via their profiles.

Good

performance

The application of CASSANDRA towards drug gene association pre-

diction and the identification of drug repurposing cases has been demon-

strated. Regarding the drug gene association prediction, the performance

of the algorithm is evaluated on 6 datasets. It has to be pinpointed that

all drug-gene pairs consisting of co-occurring drugs and genes are removed

from the datasets. Results show that the suggested method is robust and

its performance is independent from the size and type of the dataset. No-

tably, CASSANDRA achieves an AUC up to 0.88 in prioritizing true

associations between Approved drugs and Human genes. Considering the

overoptimistic results provided by supervised techniques which reach at
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times an AUC up to 0.93 (Pahikkala et al., 2014), CASSANDRA’s per-

formance is quite striking.

Co-occurrence

produces

meaningful

predictions

The evaluation revealed further interesting properties of CASSANDRA.

First, it can successfully prioritise direct (i.e., physically binding) from in-

direct drug gene associations, as shown by the AUC values obtained on

the datasets CTDBinding and CTDRelated . Second, the use of co-occurence

based profiles derived from literature doesn’t affect at all the performance

of CASSANDRA. In particular, when using GO terms, the co-occurrence

based profiles outperformed the manually curated MeSH Disease profiles.

This suggests that the co-occurence based profiles derived from the biomed-

ical literature are indeed reliable for associating drugs to genes.

Textual

evidence

confirm

predictions

With regards to drug gene association prediction, three prediction cases

were further analyzed. Two of them correspond to the drugs Cathine and

Fenethylline for which there are no known targets, so far. CASSANDRA

predicts two strongly associated genes, one for each drug; GHRL and ApoE

respectively. The predicted genes rank among the first 0.4 % of the ordered

list of genes scored against each drug. To assess the quality of these predic-

tions, we digged into the literature and manually retrieved concrete pieces

of evidence which indeed suggest that the respective associations are mean-

ingful. An additional case study was investigated in the same fashion, this

time between the known drug Milnacipran and its known associated gene

SLC6A4 that codes for its target. The results reveal that CASSANDRA

did consider the new therapeutic indication Fibromyalgia for the establish-

ment of the association, despite the fact that the drug’s efficacy on the

respective disease was at the time unknown.

New

therapeutic

indications

The efficacy of CASSANDRA towards drug repurposing was further

evaluated. A dataset comprising all known drug repositioning cases that

were FDA approved within the last 5 years was compiled. For these drugs

the generated profiles are based on the literature data before the year of

approval of each repositioning case. We demonstrated that the respective

profiles always include the new indications, and that in the majority of the

cases these indications are ranked high among drugs’ profile terms.
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6.2 Future directions

Improve

annotation

There are certain directions to improve further the results generated by

CASSANDRA. The first is to alleviate the error introduced by the annota-

tion methodologies which are responsible to a big extent for the existence

of false positive drug gene associations (Zhu et al., 2005; Jenssen et al.,

2001). Perhaps the use of additional annotators could further enhance the

quality of results if the interagreement space of them were to be considered.

More chemical

dictionaries

Towards the same direction, an interesting extension is to use more drug/-

compound related dictionaries. CASSANDRA is currently limited only

in drugs reported in the DrugBank database. Although DrugBank consists

a high quality resource of drug target interaction data and the respective

in-house dictionary demonstrates high performance, still there is the pos-

sibility to harness new chemical taggers that have been recently developed.

For example, ChemSpot by Rocktäschel et al. (2012) or OSCAR4 by Jes-

sop et al. (2011) have shown encouraging results towards the annotation

of chemicals in text. The tricky issue of the recognition of IUPAC drug

names in text is not extensively studied but there are also some works

that CASSANDRA could benefit from, such as the supervised approach

proposed by Klinger et al. (2008).

Integrate the

profiles

Regarding the profile generation, as shown in Chapter 4, the co-occurrence

based profiles proved highly efficient. However, one could not deny that

the information existing in public repositories is also of value and can con-

tribute to the generation of high quality drug gene association hypotheses.

Consequently, a further improvement would be to enhance the quality of

the profiles with ontological concepts found in biomedical repositories. For

example, it would be interesting to investigate whether the performance im-

proves if the manually curated and co-occurrence based profiles are merged

in the case of MeSH Diseases. Regarding GO terms, the Gene Ontology

Annotation (GOA) could also enhance the profiles with interesting associ-

ations. Moreover, the profiles of drugs and genes could be also enriched

with physicochemical properties and additional protein structural informa-

tion respectively. Another suggestion would be to exploit pharmacogenomic

data that is aggregated and represented in the form of networks (Daminelli

et al., 2012).
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Mine a

different text

Abstracts and titles from MEDLINE have proven a high quality resource

for the identification of relationships between the biomedical entities. How-

ever, despite the limited space of available full-text articles (Thomas et al.,

2012), it would be interesting to examine if the they provide relations that

can further improve the prioritization of drug gene associations. Neverthe-

less, this has to be taken with a grain of salt, since the percentage of ”nega-

tion” and hedgy sentences increases in the article bodies (Fontelo et al.,

2013). So far, CASSANDRA utilizes co-occurrences on the abstract-level.

An interesting expansion is to take one step further and use sentence-level

co-occurrence information. Although the majority of biomedical entities

co-occurring in abstracts, also co-occur in sentences (Niu et al., 2010) and

hence recall remains unaffected, still an increase in the precision would be

expected. Of course, in such a case the whole application of the nPMI

model would have to be reformulated.

Pattern/rule

application

The next step towards literature-based drug gene association prediction

would be the use of patterns/rules that would interpret the hypotheses.

A rough suggestion is to automatically retrieve the text in between the

biomedical entities, which then in turn can be either inspected manually

or mined to extract explicit associations. However, such an extension is far

more feasible if automatic pattern generation is followed, since patterns are

domain dependent and laborious to create. Nevertheless, the use of pat-

terns isn’t enough to consolidate a drug gene association derived from text.

Rule based approaches to unravel the concordant relations could alleviate

the problem, but also add to the complexity of the task significantly.

Complementarity

with other

approaches

Is it worthy to seek such a laborious and complicated direction to fur-

ther establish the hypotheses that CASSANDRA generates? The as-

sociations provided by CASSANDRA are derived from text. They are

in fact the representation of a signal that a drug and a gene are poten-

tially associated. Instead of dedicating hours of research in literature to

discover hidden relations and common islands of data between drugs and

genes, CASSANDRA speeds up the process and produces the respective

signal. That is, by nature, complementary evidence to other approached

towards drug-target interaction prediction. The results of CASSANDRA

can be furtherly examined via large scale molecular docking analysis as in

Li et al. (2011). Lately, these approaches become more and more popu-

lar. In a recent study, it is suggested that the binding site similarity is
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the key to identify promiscuous drugs and boost drug repurposing. (Haupt

et al., 2013). CASSANDRA could significantly benefit from such analy-

ses towards the refinement of the proposed associations without necessarily

having to further process the text that underlies them.



Chapter 7

Supplementary Material

Table 7.1: Arithmetic means for different semantic similarity metrics

nPMI Lin Wu-Palmer

DrugBankApproved true 0.553 0.730 0.835
false 0.306 0.487 0.625
distance 0.247 0, 243 0, 210

DrugBankExperimental true 0.358 0.470 0.601
false 0.306 0.489 0.622
distance 0, 052 −0, 019 −0, 021

Y amanishi true 0.590 0.771 0.876
false 0.486 0.722 0.841
distance 0, 104 0, 049 0, 035

The table shows the arithmetic means for the score distributions of true and
false drug gene associations that every metric of semantic similarity achieves
on the respective dataset. The difference between the means of true and false
distribution is provided. Clearly, nPMI achieves the highest difference on every
dataset. When applied on the DrugBankExperimental dataset, Wu-Palmer and
Lin completely fail the discrimination task.
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Figure 7.1: All ratios PR curves for all datasets

All PR curves for different ratios of imbalance between true and false drug
gene associations contained in the evaluation datasets are shown. The curves
are consistent with the respective ROC curves. Again, CASSANDRA per-
forms better on the datasets DrugBankApproved and CTDBinding than the Drug-
BankExperimental and CTDRelated respectively. Increasing the number of false
drug gene associations significantly affects the DrugBankExperimental due the
highly similar score distributions that exist between true and false drug gene
pairs.
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Figure 7.2: All ratios PR curves - Manually curated vs. co-occurrence
based profiles

All PR curves for different ratios of imbalance between true and false drug gene
associations are shown. Co-occurrence based profiles of GO terms demonstrate
the best performance across all ratios. Manually curated MeSH Disease profiles
perform similar to the co-occurrence joined profiles. Doubling or quadrupling
the size of false drug gene associations doesn’t affect significantly the algorithm’s
efficacy.
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