3 research outputs found

    A routing defense mechanism using evolutionary game theory for Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) often suffer from intermittent disruption due to factors such as mobility and energy. Though lots of routing algorithms in DTNs have been proposed in the last few years, the routing security problems have not attracted enough attention. DTNs are still facing the threats from different kinds of routing attacks. In this paper, a general purpose defense mechanism is proposed against various routing attacks on DTNs. The defense mechanism is based on the routing path information acquired from the forwarded messages and the acknowledgment (ACK), and it is suitable for different routing schemes. Evolutionary game theory is applied with the defense mechanism to analyze and facilitate the strategy changes of the nodes in the networks. Simulation results show that the proposed evolutionary game theory based defense scheme can achieve high average delivery ratio, low network overhead and low average transmission delay in various routing attack scenarios. By introducing the game theory, the networks can avoid being attacked and provide normal transmission service. The networks can reach evolutionary strategy stable (ESS) under special conditions after evolution. The initial parameters will affect the convergence speed and the final ESS, but the initial ratio of the nodes choosing different strategies can only affect the game process

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented
    corecore