3 research outputs found

    A face recognition system using convolutional feature extraction with linear collaborative discriminant regression classification

    Get PDF
    Face recognition is one of the important biometric authentication research areas for security purposes in many fields such as pattern recognition and image processing. However, the human face recognitions have the major problem in machine learning and deep learning techniques, since input images vary with poses of people, different lighting conditions, various expressions, ages as well as illumination conditions and it makes the face recognition process poor in accuracy. In the present research, the resolution of the image patches is reduced by the max pooling layer in convolutional neural network (CNN) and also used to make the model robust than other traditional feature extraction technique called local multiple pattern (LMP). The extracted features are fed into the linear collaborative discriminant regression classification (LCDRC) for final face recognition. Due to optimization using CNN in LCDRC, the distance ratio between the classes has maximized and the distance of the features inside the class reduces. The results stated that the CNN-LCDRC achieved 93.10% and 87.60% of mean recognition accuracy, where traditional LCDRC achieved 83.35% and 77.70% of mean recognition accuracy on ORL and YALE databases respectively for the training number 8 (i.e. 80% of training and 20% of testing data)

    A Novel Feature Extraction Descriptor for Face Recognition

    Get PDF
    This paper presents a new feature extraction technique for face recognition. The new model, called multi-descriptor, is based on the well-known method of local binary patterns. It involves many different neighborhoods of the central pixel. Its unique advantage is that this descriptor allows the use of different neighborhood sizes instead of only one point. This structure ensures reasonable effectiveness and also provides the possibility to obtain a different distribution of features. Based on the new descriptor, a face recognition model using the pairwise feature descriptor based on the proposed descriptor was developed in this work, and local binary patterns were created to investigate the similarity and dissimilarity between the two models. For both models, the training was done using the support vector machine method on different face databases to overcome face recognition problems such as camera distance, expression, large head size, and illumination variations. The proposed technique achieved perfect accuracy on almost all tested databases including the Extended Yale B and Grimace database
    corecore