18 research outputs found

    A globally convergent matricial algorithm for multivariate spectral estimation

    Full text link
    In this paper, we first describe a matricial Newton-type algorithm designed to solve the multivariable spectrum approximation problem. We then prove its global convergence. Finally, we apply this approximation procedure to multivariate spectral estimation, and test its effectiveness through simulation. Simulation shows that, in the case of short observation records, this method may provide a valid alternative to standard multivariable identification techniques such as MATLAB's PEM and MATLAB's N4SID

    A Probe into Propagators

    Full text link
    HonorsInterdisciplinary PhysicsUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/167885/1/jianif.pd

    Uncertainty Bounds for Spectral Estimation

    Full text link
    The purpose of this paper is to study metrics suitable for assessing uncertainty of power spectra when these are based on finite second-order statistics. The family of power spectra which is consistent with a given range of values for the estimated statistics represents the uncertainty set about the "true" power spectrum. Our aim is to quantify the size of this uncertainty set using suitable notions of distance, and in particular, to compute the diameter of the set since this represents an upper bound on the distance between any choice of a nominal element in the set and the "true" power spectrum. Since the uncertainty set may contain power spectra with lines and discontinuities, it is natural to quantify distances in the weak topology---the topology defined by continuity of moments. We provide examples of such weakly-continuous metrics and focus on particular metrics for which we can explicitly quantify spectral uncertainty. We then consider certain high resolution techniques which utilize filter-banks for pre-processing, and compute worst-case a priori uncertainty bounds solely on the basis of the filter dynamics. This allows the a priori tuning of the filter-banks for improved resolution over selected frequency bands.Comment: 8 figure

    Rational Covariance Extension, Multivariate Spectral Estimation, and Related Moment Problems: Further Results and Applications

    Get PDF
    This dissertation concerns the problem of spectral estimation subject to moment constraints. Its scalar counterpart is well-known under the name of rational covariance extension which has been extensively studied in past decades. The classical covariance extension problem can be reformulated as a truncated trigonometric moment problem, which in general admits infinitely many solutions. In order to achieve positivity and rationality, optimization with entropy-like functionals has been exploited in the literature to select one solution with a fixed zero structure. Thus spectral zeros serve as an additional degree of freedom and in this way a complete parametrization of rational solutions with bounded degree can be obtained. New theoretical and numerical results are provided in this problem area of systems and control and are summarized in the following. First, a new algorithm for the scalar covariance extension problem formulated in terms of periodic ARMA models is given and its local convergence is demonstrated. The algorithm is formally extended for vector processes and applied to finite-interval model approximation and smoothing problems. Secondly, a general existence result is established for a multivariate spectral estimation problem formulated in a parametric fashion. Efforts are also made to attack the difficult uniqueness question and some preliminary results are obtained. Moreover, well-posedness in a special case is studied throughly, based on which a numerical continuation solver is developed with a provable convergence property. In addition, it is shown that solution to the spectral estimation problem is generally not unique in another parametric family of rational spectra that is advocated in the literature. Thirdly, the problem of image deblurring is formulated and solved in the framework of the multidimensional moment theory with a quadratic penalty as regularization

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Novel Results on the Factorization and Estimation of Spectral Densities

    Get PDF
    This dissertation is divided into two main parts. The first part is concerned with one of the most classical and central problems in Systems and Control Theory, namely the factorization of rational matrix-valued spectral densities, commonly known as the spectral factorization problem. Spectral factorization is a fundamental tool for the solution of a variety of problems involving second-order statistics and quadratic cost functions in control, estimation, signal processing and communications. It can be thought of as the frequency-domain counterpart of the ubiquitous Algebraic Riccati Equation and it is intimately connected with the celebrated Kálmán-Yakubovich-Popov Lemma and, therefore, to passivity theory. Here, we provide a rather in-depth and comprehensive analysis of this problem in the discrete-time setting, a scenario which is becoming increasingly pervasive in control applications. The starting point in our analysis is a general spectral factorization result in the same vein of Dante C. Youla. Building on this fundamental result, we then investigate some key issues related to minimality and parametrization of minimal spectral factors of a given spectral density. To conclude, we show how to extend some of the ideas and results to the more general indefinite or J-spectral factorization problem, a technique of paramount importance in robust control and estimation theory. In the second part of the dissertation, we consider the problem of estimating a spectral density from a finite set of measurements. Following the Byrnes-Georgiou-Lindquist THREE (Tunable High REsolution Estimation) paradigm, we look at spectral estimation as an optimization problem subjected to a generalized moment constraint. In this framework, we examine the global convergence of an efficient algorithm for the estimation of scalar spectral densities that hinges on the Kullback-Leibler criterion. We then move to the multivariate setting by addressing the delicate issue of existence of solutions to a parametric spectral estimation problem. Eventually, we study the geometry of the space of spectral densities by revisiting two natural distances defined in cones for the case of rational spectra. These new distances are used to formulate a "robust" version of THREE-like spectral estimation

    The Sixth Copper Mountain Conference on Multigrid Methods, part 2

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth
    corecore