430 research outputs found

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Resource allocation in future green wireless networks : applications and challenges

    Get PDF
    Over the past few years, green radio communication has been an emerging topic since the footprint from the Information and Communication Technologies (ICT) is predicted to increase 7.3% annually and then exceed 14% of the global footprint by 2040. Moreover, the explosive progress of ICT, e.g., the fifth generation (5G) networks, has resulted in expectations of achieving 10-fold longer device battery lifetime, and 1000-fold higher global mobile data traffic over the fourth generation (4G) networks. Therefore, the demands for increasing the data rate and the lifetime while reducing the footprint in the next-generation wireless networks call for more efficient utilization of energy and other resources. To overcome this challenge, the concepts of small-cell, energy harvesting, and wireless information and power transfer networks can be evaluated as promising solutions for re-greening the world. In this dissertation, the technical contributions in terms of saving economical cost, protecting the environment, and guaranteeing human health are provided. More specifically, novel communication scenarios are proposed to minimize energy consumption and hence save economic costs. Further, energy harvesting (EH) techniques are applied to exploit available green resources in order to reduce carbon footprint and then protect the environment. In locations where implemented user devices might not harvest energy directly from natural resources, base stations could harvest-and-store green energy and then use such energy to power the devices wirelessly. However, wireless power transfer (WPT) techniques should be used in a wise manner to avoid electromagnetic pollution and then guarantee human health. To achieve all these aspects simultaneously, this thesis proposes promising schemes to optimally manage and allocate resources in future networks. Given this direction, in the first part, Chapter 2 mainly studies a transmission power minimization scheme for a two-tier heterogeneous network (HetNet) over frequency selective fading channels. In addition, the HetNet backhaul connection is unable to support a sufficient throughput for signaling an information exchange between two tiers. A novel idea is introduced in which the time reversal (TR) beamforming technique is used at a femtocell while zero-forcing-based beamforming is deployed at a macrocell. Thus, a downlink power minimizationscheme is proposed, and optimal closed-form solutions are provided. In the second part, Chapters 3, 4, and 5 concentrate on EH and wireless information and power transfer (WIPT) using RF signals. More specifically, Chapter 3 presents an overview of the recent progress in green radio communications and discusses potential technologies for some emerging topics on the platforms of EH and WPT. Chapter 4 develops a new integrated information and energy receiver architecture based on the direct use of alternating current (AC) for computation. It is shown that the proposed approach enhances not only the computational ability but also the energy efficiency over the conventional one. Furthermore, Chapter 5 proposes a novel resource allocation scheme in simultaneous wireless information and power transfer (SWIPT) networks where three crucial issues: power-efficient improvement, user-fairness guarantee, and non-ideal channel reciprocity effect mitigation, are jointly addressed. Hence, novel methods to derive optimal and suboptimal solutions are provided. In the third part, Chapters 6, 7, and 8 focus on simultaneous lightwave information and power transfer (SLIPT) for indoor applications, as a complementary technology to RF SWIPT. In this research, Chapter 6 investigates a hybrid RF/visible light communication (VLC) ultrasmall cell network where optical transmitters deliver information and power using the visible light, whereas an RF access point works as a complementary power transfer system. Thus, a novel resource allocation scheme exploiting RF and visible light for power transfer is devised. Chapter 7 proposes the use of lightwave power transfer to enable future sustainable Federated Learning (FL)-based wireless networks. FL is a new data privacy protection technique for training shared machine learning models in a distributed approach. However, the involvement of energy-constrained mobile devices in the construction of the shared learning models may significantly reduce their lifetime. The proposed approach can support the FL-based wireless network to overcome the issue of limited energy at mobile devices. Chapter 8 introduces a novel framework for collaborative RF and lightwave power transfer for wireless communication networks. The constraints on the transmission power set by safety regulations result in significant challenges to enhance the power transfer performance. Thus, the study of technologies complementary to conventional RF SWIPT is essential. To cope with this isue, this chapter proposes a novel collaborative RF and lightwave power transfer technology for next-generation wireless networks

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    • …
    corecore