537 research outputs found

    Pricing Convertible Bonds with Interest Rate, Equity, Credit and FX Risk

    Get PDF
    Convertible bonds are hybrid securities whose pricing relies on a set of complex inter-dependencies due to the sensitivity to interest rate risk, underlying (equity) risk, FX risk, and credit risk, and due to the convertible bond’s early exercise American feature. We present a two factor model of interest rate and equity risk that is implemented using the Crank-Nicholson technique on the discretized pricing equation with projective successive over-relaxation. This paper extends a methodology proposed in the literature (TF[98]) to deal with credit risk in a self- consistent way, and proposes a new methodology to deal with FX sensitive cross-currency convertibles. A technique for extracting the price of vanilla options struck on a synthetic asset, the foreign equity in domestic currency, is employed to obtain the implied volatility for these options. These implied volatilities are then used to obtain the local volatility for use in the numerical routine. The model is designed to deal with most of the usual contractual features such as coupons, dividends, continuous and/or Bermudan call and put clauses. We suggest that credit spread adjustments in the boundary conditions can be made, to account for the negative correlation between spreads and equity. Detailed description of the numerical methods and the discretization schemes, together with their accuracy, are provided.cross-currency convertibles, credit spread, interest rate risk, American feature, local volatility, Crank-Nicholson.

    Pricing Convertible Bonds with Interest Rate, Equity, Credit and FX Risk

    Get PDF
    Convertible bonds are hybrid securities whose pricing relies on a set of complex inter-dependencies due to the sensitivity to interest rate risk, underlying (equity) risk, FX risk, and credit risk, and due to the convertible bond’s early exercise American feature. We present a two factor model of interest rate and equity risk that is implemented using the Crank-Nicholson technique on the discretized pricing equation with projective successive over-relaxation. This paper extends a methodology proposed in the literature (TF[98]) to deal with credit risk in a self-consistent way, and proposes a new methodology to deal with FX sensitive cross-currency convertibles. A technique for extracting the price of vanilla options struck on a synthetic asset, the foreign equity in domestic currency, is employed to obtain the implied volatility for these options. These implied volatilities are then used to obtain the local volatility for use in the numerical routine. The model is designed to deal with most of the usual contractual features such as coupons, dividends, continuous and/or Bermudan call and put clauses. We suggest that credit spread adjustments in the boundary conditions can be made, to account for the negative correlation between spreads and equity. Detailed description of the numerical methods and the discretization schemes, together with their accuracy, are provided. cross-currency convertibles, credit spread, interest rate risk. American feature, local volatility, Crank-Nicholson

    Efficient numerical methods based on integral transforms to solve option pricing problems

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, we design and implement a class of numerical methods (based on integral transforms) to solve PDEs for pricing a variety of financial derivatives. Our approach is based on spectral discretization of the spatial (asset) derivatives and the use of inverse Laplace transforms to solve the resulting problem in time. The conventional spectral methods are further modified by using piecewise high order rational interpolants on the Chebyshev mesh within each sub-domain with the boundary domain placed at the strike price where the discontinuity is located. The resulting system is then solved by applying Laplace transform method through deformation of a contour integral. Firstly, we use this approach to price plain vanilla options and then extend it to price options described by a jump-diffusion model, barrier options and the Heston’s volatility model. To approximate the integral part in the jump-diffusion model, we use the Gauss-Legendre quadrature method. Finally, we carry out extensive numerical simulations to value these options and associated Greeks (the measures of sensitivity). The results presented in this thesis demonstrate the spectral accuracy and efficiency of our approach, which can therefore be considered as an alternative approach to price these class of options

    Continuously monitored barrier options under Markov processes

    Full text link
    In this paper we present an algorithm for pricing barrier options in one-dimensional Markov models. The approach rests on the construction of an approximating continuous-time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing it for a range of models, including a local Levy process and a local volatility jump-diffusion. We also provide a convergence proof and error estimates for this algorithm.Comment: 35 pages, 5 figures, to appear in Mathematical Financ
    • …
    corecore