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Background
The Black–Scholes equation, which is proposed by Black and Scholes (1973), is a finan-
cial model that is concerned with options. An option is a contract between the seller and 
the buyer. It consists of a call option and a put option. Option valuation depends on the 
underlying asset price and time. European options can only be exercised at the expira-
tion date, but American options can be exercised at any time before the expiration date. 
The Black–Scholes equation provides an option pricing formula for European option. 
The analytic solution is used in general cases with basic assumptions but it is not satis-
fied in some conditions.

The numerical methods for solving the Black–Scholes equation have been presented 
in many scholarly studies. The binomial process and probability for formula valuation 
of option pricing are proposed by Cox et al. The rate of return on the stock over each 
period can have two possible values and the end stock price of maturity will be either us 
or ds (Cox et al. 1979). Moon and Kim use an adaptive averaging binomial method for 
option valuation (Moon and Kim 2013). The symmetrical lattice for real options valua-
tion are presented by Bastian-Pinto (2015). Glazyrina and Melnikov presented an alter-
native derivation of the Black–Scholes formula from a binomial option pricing model 
(Glazyrina and Melnikov 2016). The finite difference method by Schwartz developed the 
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numerical solution for valuing options on dividend-paying stocks. The boundary condi-
tion is enforced to take into account the fact that the stock price will drop by the amount 
of the dividend (Schwartz 1977). A numerical upwind scheme for solving the backward 
time parabolic partial differential equation is proffered by Vazquez (1998). A robust 
finite difference method for pricing European and American options is presented by 
Cen and Le (2010, 2011). Cen et al. introduced a central difference scheme with moving 
mesh in the spatial discretization for pricing Asian options (Cen et al. 2013). Lesmana 
and Wang purposed an upwind finite difference method for a nonlinear Black–Scholes 
equation (Lesmana and Wang 2013). The uniform cubic B-spline collocation method is 
implemented to find the numerical solution by a horizontal method of lines, to discre-
tize the temporal variable and the spatial variable (Kadalbajoo et al. 2012).

Kumar et al. suggested that the governing equation is discretized by the θ-weighted 
method and the option price is approximated by the radial basis functions based on the 
finite difference method (Kumar et  al. 2015). Mohammadi presented Quintic B-spline 
collocation approach for solving generalized Black–Scholes equation governing option 
pricing, the horizontal method of lines for time integration and θ-method are used for 
temporal discretization (Mohammadi 2015). The fractional Black–Scholes model are 
presented by Bjork and Hult (2005), Song and Wang (2013). Kumar et  al. presented a 
numerical computation of fractional Black–Scholes equation arising in financial mar-
ket (Kumar et al. 2014). The meshless local Petrov–Galerkin (MLPG) method based on 
moving kriging interpolation for solving fractional Black–Scholes model are purposed 
by Phaochoo et al. (2016). Kleinert and Korbel presented double-fractional differential 
equation for the prices of options (Kleinert and Korbel 2016). Zhang et al. introduced 
the numerical simulation of the tempered fractional Black–Scholes equation for Euro-
pean double barrier option (Zhang et al. 2016).

A truly meshless method for solving boundary value problems based on the local sym-
metric weak form and the moving least squares (MLS) approximation, called the MLPG 
method, has been proposed and successfully applied to solve many problems (Atluri and 
Shen 2002). The MLPG method is one of the most viable methods in which the mov-
ing least square (MLS) approach is used to construct the shape functions. Although the 
MLPG method has been applied to many problems, there exists an inconvenience or 
disadvantage when using the MLPG because of the difficulty in implementing essential 
boundary conditions. This is because the MLS shape functions lack the Kronecker delta 
property. Therefore the moving kriging interpolation (MKI) method (Yimnak and Luad-
song 2014) has been proposed to overcome this problem. It uses nodal values in the local 
support domain to construct shape functions with the Kronecker delta property. The 
MKI method works well for practical problems.

In this paper, we propose a numerical method based on the MLPG method to solve 
a generalized Black–Scholes equation. The MLPG is a truly meshless method, which 
involves not only a meshless interpolation for the trial functions, but also a meshless 
integration of the weak-form. MLPG type 2 (MLPG2) is chosen for this research so the 
Kronecker delta is the test function. This method will avoid the domain integral in the 
weak-form. In addition, we compared numerical solutions among the finite difference 
method, the cubic spline method and the MLPG method in the numerical experiment.



Page 3 of 14Phaochoo et al. SpringerPlus  (2016) 5:305 

Problem formulation
The Black–Scholes equation is the outstanding financial equation that solves European 
option pricing without a transaction cost. Moreover, underlying asset prices distrib-
uted on the log indicate normal random walks, risk-free interest rates, no dividends and 
no arbitrate opportunities as fundamental assumptions. The Black–Scholes equation 
follows:

with terminal and boundary conditions

where u(s, τ), T, r and σ are the value of European call options at underlying asset price 
s at time τ, the expiration date, risk-free interest rate and volatility of underlying asset 
prices, respectively. From Eq.  (1), when s goes to zero then degenerating will occur in 
approximation. We transform the Black–Scholes equation into a non-degenerate par-
tial differential equation by using a logarithmic transformation, x =  ln s, t = T −  τ, 
and define the computational domain for convenience in numerical experiments by 
Ω = [xmin, xmax] × [0, T], where xmin = −ln(4E), xmax = ln(4E) (Huang and Cen 2014).

Moving kriging interpolation
The moving kriging interpolation (MKI) is used to construct the shape function. The 
function u(x) is defined in the domain Ω and the approximate function is un(x). The 
subdomain Ωx that encompasses these surrounding nodes is called the interpolation 
domain of point x. The formulation of the meshless shape function using MKI is given by

where U(t) =
[

û1(t)û2(t)û3(t) . . . ûN (t)
]T is a vector value of the function in the 

domain Ω. Φ(x) is a 1 × N vector of shape functions, expressed as

where matrix A and B are defined as

(1)
∂u

∂τ
+ r(τ )s

∂u

∂s
+ 1

2
σ 2(s, τ )s2

∂2u

∂s2
− r(τ )u = 0, (s, τ ) ∈ R

+ × [0,T ]

u(s,T ) = max(s − E, 0), s ∈ R
+, u(0, τ ) = 0, τ ∈ [0,T ],

(2)
∂u

∂t
= 1

2
σ 2(x, t)

∂2u

∂x2
+

(

r(t)− 1

2
σ 2(x, t)

)

∂u

∂x
− r(t)u, (x, t) ∈ �

u(x, 0) = max
(

e
x − E, 0

)

, x ∈ (xmin, xmax),

u(xmin, t) = 0, u(xmax, t) = e
xmax − Ee

−
∫

t

0 r(s)ds, t ∈ [0,T ].

(3)uh(x) =
N
∑

j=1

φj ûj(t) = Φ(x)U(t), x ∈ �,

(4)�(x) = PT (x)A+ rT (x)B,

(5)A =
(

PTR−1P
)−1

PTR−1,

(6)B = R−1(I − PA),



Page 4 of 14Phaochoo et al. SpringerPlus  (2016) 5:305 

and

For matrix P with size N × m, values of the polynomial basis function Eq. (7) at the 
given set of nodes are collected as follows

Matrix R and vector r(x) are defined by the following

where γ(xi, xj) is the correlation between any pair of nodes located at xi and xj, represent-
ing the covariance of the field value u(x). A simple and frequently used correlation func-
tion is a Gaussian function as

where rij =
∥

∥xi − xj
∥

∥ and ǫ > 0 are the correlation and shape parameters, respectively 
used to fit the model.

Spatial discretization
The MLPG method constructs the local weak form over the local subdomain, which is a 
small region taken for each node in a global domain. Multiplying test function vi(x) into 
Eq. (2) and then integrating it over subdomain �i

s yields the following expression:

where vi is a test function that is significant for each node. Rearranging Eq. (12), we have

where u,xx = ∂2u
∂x2

,u,x = ∂u
∂x. Substituting trial function uh(x, t) =

∑N
j=1 φj(x)ûj(t) into u 

and its derivative in Eq. (13)

(7)pT (x) = [p1(x1)p2(x2)p3(x3) . . . pm(xN )].

(8)P =







p1(x1) · · · pm(x1)
...

. . .
...

p1(xN ) · · · pm(xN )






.

(9)P =







γ (x1, x1) · · · γ (x1, x1)
...

. . .
...

γ (xN , x1) · · · γ (xN , xN )






,

(10)rT (x) = [γ (x, x1) γ (x, x2) . . . γ (x, xN )],

(11)γ
(

xi, xj
)

= e
−ǫr2ij ,

(12)

∫

�i
s

∂u

∂t
vi(x)d� =

∫

�i
s

(

1

2
σ 2(x, t)

∂2u

∂x2
+

(

r(t)− 1

2
σ 2(x, t)

)

∂u

∂x
− r(t)u

)

vi(x)d�,

(13)

∫

�i
s

∂u

∂t
vi(x)d� = 1

2

∫

�i
s

σ 2(x, t)u,xx vi(x)d�

+
∫

�i
s

(

r(t)− 1

2
σ 2(x, t)

)

u,x vi(x)d�

−
∫

�i
s

r(t)uvi(x)d�,
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where N is the number of nodes surrounding point x which has an effect on u(x) and 
ûj(t) is value of the option at time t. The shape function, фj(x), is constructed by the 
moving kriging interpolation which has the Kronecker delta property, thereby enhanc-
ing arrangement of the nodal shape construction accuracy. Rearranging Eq. (14) yields 
the following results:

This research uses MLPG type 2 (MLPG2) (Cen and Le 2011), then the test function vi 
is chosen by the Kronecker delta function,

The test function will define significance for each node in the subdomain. In this case, 
substituting test function vi(x) to Eq.  (15) and then integrating it over subdomain �i

s 
yields the following results:

Equation (16) can be written in matrix form as follows:

where

(14)

∫

�i
s

N
∑

j=1

φj(x)vi(x)
dûj

dt
d� = 1

2

∫

�i
s

N
∑

j=1

φj,xx(x)σ
2(x, t)vi(x)ûjd�

+
∫

�i
s

N
∑

j=1

φj,x(x)

(

r(t)− 1

2
σ 2(x, t)

)

vi(x)ûjd�

−
∫

�i
s

N
∑

j=1

φj(x)r(t)vi(x)ûjd�,

(15)

N
∑

j=1

∫

�i
s

φj(x)vi(x)d�
dûj

dt
= 1

2

N
∑

j=1

∫

�i
s

φj,xx(x)σ
2(x, t)vi(x)d�ûj

+
N
∑

j=1

∫

�i
s

φj,x(x)

(

r(t)− 1

2
σ 2(x, t)

)

vi(x)d�ûj

−
N
∑

j=1

∫

�i
s

φj(x)r(t)vi(x)d�ûj ,

vi(x) =
{

0, x �= xi
1, x = xi

, i = 1, 2, . . . ,N .

(16)

N
∑

j=1

φj(xi)
dûj

dt
=

N
∑

j=1

[

1

2
σ 2(xi, t)φj,xx(xi)

+
(

r(t)− 1

2
σ 2(xi, t)

)

φj,x(xi)− r(t)φj(xi)

]

ûj .

(17)A
dU

dt
= BU ,

A =
[

Aij

]

N×N ,
Aij = φj(xi),

B =
[

Bij

]

N×N
, Bij =

1

2
σ 2(xi, t)φj,xx(xi)+

(

r(t)− 1

2
σ 2(xi, t)

)

φj,x(xi)− r(t)φj(xi)],

U =
[

û1û2û3 . . . ûN
]T

.
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Since the shape function that is constructed by the moving kriging interpolation satisfies 
the Kronecker delta property, A is the identity matrix. Therefore, Eq. (17) can be written 
as

Temporal discretization
The numerical solution of a European option, using the implicit method, requires the 
generation of a modified PDE operator through a finite difference approximation of time 
derivative. We will do this using the θ-weighted method.

Consider the following initial-boundary value problem:

where Lu = 1
2
σ 2(x, t) ∂

2u
∂x2

+
(

r(t)− 1
2
σ 2(x, t)

)

∂u
∂x − r(t)u.

By a finite difference approximation made for the time derivative with notation un(x) 
that approximates the exact solution u(x, t) at tn and tn = tn−1 + Δt, we obtain

For each fixed time level tn, the above equation, Eq. (20), is the system of linear ODEs. 
Now, using the MLPG2 method with moving kriging interpolation for constructing 
shape functions is discussed through Eqs. (12)–(18) for spatial discretization of operator 
Lu leads to

where Un =
[

ûn1û
n
2 û

n
3 . . . û

n
N

]T
, B is the discretization matrix for the space discretization 

of linear differential operator Lu, and I is the identity matrix.

Stability analysis
In this section, we present an analysis of the stability of the MLPG2 method with mov-
ing kriging interpolation using the matrix method. A small fluctuation at the nth time 
level en = Un − Ũn is introduced in Eq. (21), where Un is exact and Ũn is the numerical 
solution. The equation of the error en+1 can be written as en+1 = Gen, where the amplifi-
cation matrix G = [I − θ∆tB]−1 [I + (1 − θ)∆tB]. The numerical scheme will be stable if 
as n → ∞, the error en → 0. This can ensure that ρ(G) < 1 provided, where ρ(G) denotes 
the spectral radius of G.

It can be seen that stability is assured if all eigenvalues of the matrix [I − θ∆tB]−1 
[I + (1 − θ)∆tB] satisfy the following conditions:

(18)
dU

dt
= BU .

∂u(x, t)

∂t
= Lu(x, t), x ∈ �, 0 ≤ t ≤ T ,

u(x, 0) = u0,
(19)

u(x, t) = g(x, t), x ∈ ∂�x

(20)
un+1 − un

�t
= θLun+1 + (1− θ)Lun.

(21)(I − θ�tB)Un+1 = [I + (1− θ)�tB]Un,

(22)

∣

∣

∣

∣

1+ (1− θ)�t�

1− θ�t�

∣

∣

∣

∣

≤ 1
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where λ is the eigen value of matrix B. In the case of the Crank–Nicolson scheme (θ = 1
2
 ) 

the inequality in Eq. (22) is satisfied when Re(λ)max ≤ 0. This shows that the scheme is 
stable if Re(λ) ≤  0. The eigenvalues of matrix B highly depends on the mesh spacing 
parameter h and the shape parameter ǫ, where h is defined to be the minimal distance 
between any two points in the domain. Since it is not possible to find an explicit relation-
ship among the eigenvalue of matrix B, the number of nodes and the shape parameter ǫ 
we investigated this dependent numerically, as is given in Fig. 1.

Figure 1 shows that the maximum eigenvalue Re(λ) of matrix B varies as a function of 
shape parameter ǫ, when mesh spacing parameter h is constant. Figure 2 shows the effect 
of mesh length, h, for eigenvalue of matrix B, when the shape parameter ǫ is constant. 
It is found that the condition number of the collocation matrix becomes very large and 
the system leads to ill-conditioning, when ǫ and h become very small. Figure 3 shows 
that increasing volatility trends to ill-conditioning. In this case, if the shape parameter 
increases then eigenvalue Re(λ) will decrease. Figure 4 presents that a risk-free interest 
rate which decreases leads to ill-conditioning and if the shape parameter increases, then 

Fig. 1  The relation between Re(λ)max and shape parameter (ǫ)

Fig. 2  Relation between Re(λ)max and spatial mesh length (h)
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eigenvalue Re(λ) will decrease. Figure 5 shows the relation between mesh length h and 
the smallest of shape parameter ǫ is Re(λ)max < 0. It shows that ǫ could be large when h 
becomes smaller in value. It can be seen that we can control the stability of this numeri-
cal scheme by choosing the appropriate shape parameter.

Numerical experiments
In this section, we are going to present various numerical results to evaluate pro-
posed meshless approaches. Although the schemes work for all correlation functions, 
we will use the Gaussian function on different experimental setups. Using the MLPG2 
method, the resulting problems for European call options are solved via Crank–Nicol-
son’s method. The computational domain is partitioned with N being equi-spaced spatial 
nodes with mesh lengths. The temporal domain is divided into K equi-spaced points.

Fig. 3  The relation between Re(λ)max and the volatility (σ)

Fig. 4  The relation between Re(λ)max and risk free interest rate (r)
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The European call option can be modeled by the Black–Scholes PDE

with the payoff function given by

The boundary conditions are given as

The analytical solution for the European call option is

where N(·) is the cumulative distribution function of the standard normal distribution 
with

A simple transformation x =  ln s and t = T − τ transforms Eq.  (23) and conditions 
(24)–(25) to

with initial and boundary conditions

(23)
∂u

∂τ
+ r(τ )s

∂u

∂s
+ 1

2
σ 2(s, τ )s2

∂2u

∂s2
− r(τ )u = 0

(24)u(s,T ) = max(s − E, 0), s ∈ R
+.

(25)u(0, τ) =
{

0, s = 0

s − Ee−r(T−τ), s → ∞ .

(26)u(s, τ) = sN (d1(s, τ ))− Ee−r(T−τ )N (d2(s, τ))

d1(s, τ) =
ln

(

s
E

)

+
(

r +
(

1
2

)

σ 2
)

(T − τ)

σ
√
T − τ

,

d2(s, τ) =
ln

(

s
E

)

+
(

r −
(

1
2

)

σ 2
)

(T − τ)

σ
√
T − τ

.

(27)
∂u

∂t
= 1

2
σ 2(x, t)

∂2u

∂x2
+

(

r(t)− 1

2
σ 2(x, t)

)

∂u

∂x
− r(t)u, (x, t) ∈ �

Fig. 5  The relation between the smallest of shape parameter ϵ and the mesh length ‘h’



Page 10 of 14Phaochoo et al. SpringerPlus  (2016) 5:305 

To illustrate accuracy of the proposed method, numerical simulation was done for 
the European call option with parameters σ =  0.4, r =  0.8, T =  1, E =  1, xmin = −
ln(4E), xmax = ln(4E). Accuracy is measured in the discrete maximum norm and root 
mean square error. The discrete maximum norm and maximum of root mean square 
error are given in Table  1 that is estimated for differences N and K in the MLPG2 
methods.

where ûi is an approximate solution of option price s and ui is the analytic solution of 
option price si.

Tables 1 and 2 show convergence trends of the present method, with N = K where N 
and K are the number of points in the spatial and temporal domain. From these tabu-
lar results one can observe that Crank–Nicolson’s method converges to the exact solu-
tion and the maximum error and root mean square error decreases while increasing the 
number of nodes for any ǫ.

(28)u(x, 0) = max
(

Eex − E, 0
)

(29)u(x, t) =
{

0, x → −∞
Eex − Ee−rt , x → ∞ .

EN
∞ = max

j

∣

∣ûj − u
(

sj , t
)∣

∣,

EN
RMS =

√

√

√

√

1

N

N
∑

i=1

(

ûi − ui
)2
.

Table 1  Numerical results by difference N and ǫ at t = 0 for regular nodal points

N ǫ = 16 ǫ = 18 ǫ = 20

E
N
∞

E
N

RMS
E
N
∞

E
N

RMS
E
N
∞

E
N

RMS

8 1.0495E−001 3.3522E−002 1.1481E−001 3.6269E−002 1.2269E−001 3.8477E−002

16 8.7267E−002 2.6660E−002 1.0034E−001 3.0026E−002 1.1138E−001 3.2850E−002

32 3.4618E−002 1.3624E−002 5.3060E−002 1.9251E−002 6.5506E−002 2.2310E−002

64 2.2827E−003 1.7732E−004 2.3082E−003 2.1776E−004 2.7850E−003 2.6605E−004

128 1.9114E−003 4.7497E−005 1.9118E−003 4.9024E−005 1.9124E−003 5.1249E−005

Table 2  Numerical results by difference N for σ = 0.4, r = 0.08 and ǫ = 16 at t = 0 for irregu-
lar nodal points

N ∆t = 0.1 ∆t = 0.01

E
N
∞

E
N

RMS
E
N
∞

E
N

RMS

8 1.9276E−002 9.2465E−003 1.9277E−002 9.2453E−003

16 3.9246E−002 9.2326E−003 3.9245E−002 9.2318E−003

32 2.3700E−002 4.6122E−003 2.3713E−002 4.6136E−003

64 2.3812E−003 1.9354E−004 2.3753E−003 1.9002E−004

128 5.0184E−004 2.0978E−005 4.2664E−004 2.0389E−005
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The European call option for long maturity time

We consider the Black–Scholes equation for the European call option with parameters r, 
E, T with a wide range of volatilities σ and strike price E.

Figures 6 and 7 shows the relation between maximum error and ǫ for varieties of vola-
tility. Figure 6 presents that ǫ increases and then the error tends to stabilize for any vola-
tility. In Fig. 7, we see that the error will increase when the volatility become small and 
shape parameter, ǫ becomes large. The other volatility tends to slowly increase the error. 
Figures 8 and 9 shows the relation between maximum error and ǫ for a variety of risk-
free interest rates. These figures are observed at large values of risk-free interest rates 
due to the convection-dominant nature of the problem.

The European call option with volatility function

We consider the Black–Scholes equation for the European call option with parameters r = 0.06, 
E  =  1, T = 1, σ(s, τ ) = 0.15(0.5+ 2τ )

(

s

100
−1.2)2

( s

100 )
2+1.44

)

, xmin = − ln(4E), xmax = ln(4E). 

Fig. 6  Error plot for European call options with parameters r = 0.09, E = 1, at maturity time T = 1

Fig. 7  Error plot for European call options with parameters r = 0.09, E = 1 at maturity time T = 3
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The volatility function is the same as the given in Kadalbajoo et al. (2012) and Kumar et al. 
(2015). In this case, the exact solution is not known. Table 3 shows that the comparison of 
value options from finite differences, the cubic spline and MLPG method. We found that 
these results are very similar. Table 4 shows that our value options results differ by only 
0.54 % as compared to the finite difference method and 0.36 % as compared to the cubic 
spline method. 

Conclusion
In this paper, the MLPG method was proposed for the Black–Scholes equation, which is 
transformed for a non-degenerate partial differential equation, and used moving kriging 
shape functions which have Kronecker delta properties. The temporal discretization was 
chosen by the Crank–Nicolson method. The eigenvalue (λ) of B depends on the mesh 
spacing parameter (h) and the shape parameter (ǫ). The relation between Re(λ)max and 
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Fig. 8  Error plot for European call options with parameters E = 1, T = 1 for volatility σ = 0.2
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Fig. 9  Error plot for European call options with parameters E = 1, T = 3 for volatility σ = 0.2
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the volatility (σ) is an increasing function for all shape parameters. The relation between 
Re(λ)max and risk free interest rates (r) tends to decrease functions for all shape param-
eters. If the mesh length (h) increases, then the smallest of shape parameters ǫ will be 
decreased. The numerical results have demonstrated the accuracy and efficiency of the 
present methods. The present method gives the value option in both regular and irregu-
lar nodal points. We found that the relation between errors and shape parameters vary 
by volatility and risk-free interest rates. This method works well for finding the approxi-
mate solution of option pricing with a volatility function.
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Table 3  Approximate solutions of option values by the difference method for N = 8, K = 8, 
t = 0

Node no. Finite difference Cubic spline MLPG

1 0.0000E+00 0.0000E+00 0.0000E+00

2 3.1998E−04 −1.8384E−04 1.2871E−03

3 4.5990E−03 −2.3873E−03 −7.8427E−04

4 4.7344E−02 4.2946E−02 4.6467E−02

5 2.9821E−01 2.9823E−01 3.0188E−01

6 8.7309E−01 8.6679E−01 8.6843E−01

7 1.7531E+00 1.7490E+00 1.7509E+00

8 3.0582E+00 3.0582E+00 3.0582E+00

Table 4  Percentage of  difference in  value options by  the MLPG with  other methods 
for N = 8, K = 8, t = 0

Node no. Finite difference Cubic spline

1 0.00 0.00

2 0.10 0.15

3 0.54 0.16

4 0.09 0.35

5 0.37 0.36

6 0.47 0.16

7 0.22 0.19

8 0.00 0.00
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