114,137 research outputs found

    A Novel Reputation Management Mechanism with Forgiveness in P2P File Sharing Networks

    Get PDF
    AbstractIn peer-to-peer (P2P) file sharing networks, it is common practice to manage each peer using reputation systems. A reputation system systematically tracks the reputation of each peer and punishes peers for malicious behaviors (like uploading bad file, or virus, etc). However, current reputation systems could hurt the normal peers, since they might occasionally make mistakes. Therefore, in this paper, we introduce forgiveness mechanism into the EigenTrust reputation system to reduce such malicious treatments and give them opportunities to gain reputation back. Particularly, we take four motivations (the severity of current offence, the frequency of offences, the compensation and the reciprocity of the offender) into consideration to measure forgiveness. The simulation work shows that the forgiveness model can repair the direct trust breakdown caused by unintentional mistakes and lead to less invalid downloads, which improves the performance of P2P file sharing systems

    The Reputation, Opinion, Credibility and Quality (ROCQ) Scheme

    Get PDF
    An implicit assumption of trust in the participants is at the basis of most Peer-to-Peer (P2P) networks. However, in practice, not all participants are benign or cooperative. Identifying such peers is critical to the smooth and effective functioning of a P2P network. In this paper, we present the ROCQ mechanism, a reputation-based trust management system that computes the trustworthiness of peers on the basis of transaction-based feedback. The ROCQ model combines four parameters: Reputation (R) or a peer's global trust rating, Opinion (O) formed by a peer's first-hand interactions, Credibility (C) of a reporting peer and Quality (Q) or the confidence a reporting peer puts on the judgement it provides. We then present a distributed implementation of our scheme over FreePastry, a structured P2P network. Experimental results considering different models for malicious behavior indicate the contexts in which the ROCQ scheme performs better than existing schemes

    FRTRUST: a fuzzy reputation based model for trust management in semantic P2P grids

    Full text link
    Grid and peer-to-peer (P2P) networks are two ideal technologies for file sharing. A P2P grid is a special case of grid networks in which P2P communications are used for communication between nodes and trust management. Use of this technology allows creation of a network with greater distribution and scalability. Semantic grids have appeared as an expansion of grid networks in which rich resource metadata are revealed and clearly handled. In a semantic P2P grid, nodes are clustered into different groups based on the semantic similarities between their services. This paper proposes a reputation model for trust management in a semantic P2P Grid. We use fuzzy theory, in a trust overlay network named FR TRUST that models the network structure and the storage of reputation information. In fact we present a reputation collection and computation system for semantic P2P Grids. The system uses fuzzy theory to compute a peer trust level, which can be either: Low, Medium, or High. Our experimental results demonstrate that FR TRUST combines low (and therefore desirable) a good computational complexity with high ranking accuracy.Comment: 12 Pages, 10 Figures, 3 Tables, InderScience, International Journal of Grid and Utility Computin

    Peer-to-Peer Based Trading and File Distribution for Cloud Computing

    Get PDF
    In this dissertation we take a peer-to-peer approach to deal with two specific issues, fair trading and file distribution, arisen from data management for cloud computing. In mobile cloud computing environment cloud providers may collaborate with each other and essentially organize some dedicated resources as a peer to peer sharing system. One well-known problem in such peer to peer systems with exchange of resources is free riding. Providing incentives for peers to contribute to the system is an important issue in peer to peer systems. We design a reputation-based fair trading mechanism that favors peers with higher reputation. Based on the definition of the reputation used in the system, we derive a fair trading policy. We evaluate the performance of reputation-based trading mechanisms and highlight the scenarios in which they can make a difference. Distribution of data to the resources within a cloud or to different collaborating clouds efficiently is another issue in cloud computing. The delivery efficiency is dependent on the characteristics of the network links available among these network nodes and the mechanism that takes advantage of them. Our study is based on the Global Environment for Network Innovations (GENI), a testbed for researchers to build a virtual laboratory at scale to explore future Internets. Our study consists of two parts. First, we characterize the links in the GENI network. Even though GENI has been used in many research and education projects, there is no systematic study about what we can expect from the GENI testbeds from a performance perspective. The goal is to characterize the links of the GENI networks and provide guidance for GENI experiments. Second, we propose a peer to peer approach to file distribution for cloud computing. We develop a mechanism that uses multiple delivery trees as the distribution structure, which takes into consideration the measured performance information in the GENI network. Files are divided into chunks to improve parallelism among different delivery trees. With a strict scheduling mechanism for each chunk, we can reduce the overall time for getting the file to all relevant nodes. We evaluate the proposed mechanism and show that our mechanism can significantly reduce the overall delivery time

    Security Framework Based on Reputation Mechanism for Peer-To-Peer Systems

    Get PDF
    Peer-to-peer networks have emerged over the past several years as a new and effective way for distributed resources to communicate and cooperate. Peer-to-peer computing is the sharing of computer resources and services by direct system exchange. These information sharing environments are increasingly gaining acceptance on the Internet as they provide an infrastructure in which the desired information can be located and downloaded while preserving the anonymity. Some of the peer-to-peer networks such as Napster and Gnutella which support anonymity, open doors to possible misuse and abuse of the network resources. This is apparent in the spread of tampered resources, malicious program such as Trojan Horses and viruses by resource provider itself. In this thesis, a Peer Security Framework (PSF) has been developed using reputation-based mechanism to address these problems. This is done by an approach where the servents can keep track and share the information about the reputation of their peers with other peers. The “reputation sharing” based on a distributed polling iv algorithm in which the resource requestors can assess the reliability of respective provider before initiating the download. This approach nicely complements the existing peer-to-peer protocols and gives a limited disruption on current implementations. Furthermore, it maintains the current level of anonymity of requestors and providers as well as that of the parties sharing their views on other’s reputations
    corecore