55,465 research outputs found

    A reliable design of Wireless Body Area Networks

    Get PDF
    International audienceIn this paper, we propose a reliable topology design and provisioning approach for Wireless Body Area Networks (named RTDP-WBAN) that takes into account the mobility of the patient while guaranteeing a reliable data delivery required to support healthcare applications' needs. To do so, we first propose a 3D coordinate system able to calculate the coordinates of relay-sensor nodes in different body postures and movements. This system uses a 3D-model of a standard human body and a specific set of node positions with stable communication links, forming a virtual backbone. Next, we investigate the optimal relay nodes positioning jointly with the reliable and cost-effective data routing for different body postures and movements. Therefore, we use an Integer Linear Programming (ILP) model, that is able to find the optimal number and locations of relay nodes and calculate the optimal data routing from sensors and relays towards the sink, minimizing both the network setup cost and the energy consumption. We solve the model in dynamic WBAN (Stand, Sit and Walk) scenarios, and compare its performance to other relaying approaches. Experiment results showed that our realistic and dynamic WBAN design approach significantly improves results obtained in the literature, in terms of reliability, energy-consumption and number of relays deployed on the body

    The Adaptive Coding Techniques for Dependable Medical Network Channel

    Get PDF
    The readily existing cellular networks play an important role in the daily life communications by integrating a wide variety of wireless multimedia services with higher data transmission rates, capable to provide much more than basic voice calls. In order to increase the demands of reliable medical network infrastructure economically and establish reliable medical transmission via cellular networks, this chapter has been designed as a dependable wireless medical network using an existing mobile cellular network with sophisticated channel coding technologies, providing a new novel way of the network that is adopted as a “Medical Network Channel (MNC)” system. Adding such adaptive outer coding with an existing cellular standard as inner coding makes a concatenated channel to carry out the MNC design. The adaptive design of extra outer channel codes depends on the Quality of Services (QoS) of Wireless Body Area Networks WBANs and also on the remaining errors from the inner-used cellular decoders. The adaptive extra code has been optimized toward “Medical Network Channel (MNC)” for different medical data QoS priority levels. The accomplishment of QoS constraints for different WBAN medical data has been investigated in this chapter for “Medical Network Channel (MNC)” by using the theoretical derivations, where positive acceptable results were achieved

    Antenna and radio channel characterisation for low‐power personal and body area networks

    Get PDF
    PhDThe continuous miniaturisation of sensors, as well as the progression in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to new usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body. Body-centric wireless communications (BCWCs) is a central point in the development of fourth generation mobile communications. Body-centric wireless networks take their place within the personal area networks, body area networks and sensor networks which are all emerging technologies that have a wide range of applications (such as, healthcare, entertainment, surveillance, emergency, sports and military). The major difference between BCWC and conventional wireless systems is the radio channels over which the communication takes place. The human body is a hostile environment from a radio propagation perspective and it is therefore important to understand and characterise the effects of the human body on the antenna elements, the radio channel parameters and, hence, system performance. This thesis focuses on the study of body-worn antennas and on-body radio propagation channels. The performance parameters of five different narrowband (2.45 GHz) and four UWB (3.1- 10.6 GHz) body-worn antennas in the presence of human body are investigated and compared. This was performed through a combination of numerical simulations and measurement campaigns. Parametric studies and statistical analysis, addressing the human body effects on the performance parameters of different types of narrowband and UWB antennas have been presented. The aim of this study is to understand the human body effects on the antenna parameters and specify the suitable antenna in BCWCs at both 2.45 GHz and UWB frequencies. Extensive experimental investigations are carried out to study the effects of various antenna types on the on-body radio propagation channels as well. Results and analysis emphasize the best body-worn antenna for reliable and power-efficient on-body communications. Based on the results and analysis, a novel dual-band and dual-mode antenna is proposed for power-efficient and reliable on-body and off-body communications. The on-body performance of the DBDM antenna at 2.45 GHz is compared with other five narrowband antennas. Based on the results and analysis of six narrowband and four UWB antennas, antenna specifications and design guidelines are provided that will help in selecting the best body-worn antenna for both narrowband and UWB systems to be applied in body-centric wireless networks (BCWNs). A comparison between IV the narrowband and UWB antenna parameters are also provided. At the end of the thesis, the subject-specificity of the on-body radio propagation channel at 2.45 GHz and 3-10 GHz was experimentally investigated by considering eight real human test subjects of different shapes, heights and sizes. The subject-specificity of the on-body radio propagation channels was compared between the narrowband and UWB systems as well

    Wireless sensor network for health monitoring

    Get PDF
    Wireless Sensor Network (WSN) is becoming a significant enabling technology for a wide variety of applications. Recent advances in WSN have facilitated the realization of pervasive health monitoring for both homecare and hospital environments. Current technological advances in sensors, power-efficient integrated circuits, and wireless communication have allowed the development of miniature, lightweight, low-cost, and smart physiological sensor nodes. These nodes are capable of sensing, processing, and communicating one or more vital signs. Furthermore, they can be used in wireless personal area networks (WPANs) or wireless body sensor networks (WBSNs) for health monitoring. Many studies were performed and/or are under way in order to develop flexible, reliable, secure, real-time, and power-efficient WBSNs suitable for healthcare applications. To efficiently control and monitor a patient’s status as well as to reduce the cost of power and maintenance, IEEE 802.15.4/ZigBee, a communication standard for low-power wireless communication, is developed as a new efficient technology in health monitoring systems. The main contribution of this dissertation is to provide a modeling, analysis, and design framework for WSN health monitoring systems. This dissertation describes the applications of wireless sensor networks in the healthcare area and discusses the related issues and challenges. The main goal of this study is to evaluate the acceptance of the current wireless standard for enabling WSNs for healthcare monitoring in real environment. Its focus is on IEEE 802.15.4/ZigBee protocols combined with hardware and software platforms. Especially, it focuses on Carrier Sense Multiple Access with Collision Avoidance mechanism (CSMA/CA) algorithms for reliable communication in multiple accessing networks. The performance analysis metrics are established through measured data and mathematical analysis. This dissertation evaluates the network performance of the IEEE 802.15.4 unslotted CSMA/CA mechanism for different parameter settings through analytical modeling and simulation. For this protocol, a Markov chain model is used to derive the analytical expression of normalized packet transmission, reliability, channel access delay, and energy consumption. This model is used to describe the stochastic behavior of random access and deterministic behavior of IEEE 802.15.4 CSMA/CA. By using it, the different aspects of health monitoring can be analyzed. The sound transmission of heart beat with other smaller data packet transmission is studied. The obtained theoretical analysis and simulation results can be used to estimate and design the high performance health monitoring systems

    Improvement of Quality of Service Parameters in Dynamic and Heterogeneous WBAN

    Get PDF
    With growth in population and diseases, there is a need for monitoring and curing of patients with low cost for various health issues. Due to life threatening conditions, loss-free and timely sending of data is an essential factor for healthcare WBAN. Health data needs to transmit through reliable connection and with minimum delay, but designing a reliable, and congestion and delay free transport protocol is a challenging area in Wireless Body Area Networks (WBANs). Generally, transport layer is responsible for congestion control and reliable packet delivery. Congestion is a critical issue in the healthcare system. It not only increases loss and delay ratio but also raise a number of retransmissions and packet drop rates, which hampers Quality of Service (QoS). Thus, to meet the QoS requirements of healthcare WBANs, a reliable and fair transport protocol is mandatory. This motivates us to design a new protocol, which provides loss, delay and congestion free transmission of heterogeneous data. In this paper, we present a Dynamic priority based Quality of Service management protocol which not only controls the congestion in the network but also provides a reliable transmission with timely delivery of the packet

    A Review of Wireless Body Area Networks for Medical Applications

    Full text link
    Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time and provide real-time updates of the patient's status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solutions towards in-body and on-body sensor networks.Comment: 7 pages, 7 figures, and 3 tables. In V3, the manuscript is converted to LaTe
    corecore