6,205 research outputs found

    Negative Externalities on Property Values Resulting from Water Impairment: The Case of the Pigeon River Watershed

    Get PDF
    The following hypothesis was tested: Willingness to bear a negative water impairment externality differs between those who do and those who do not receive economic benefit from the impairment source, e.g., a paper mill. The hypothesis was tested using a hedonic analysis of ambient water quality in two discrete housing markets in the Pigeon River Watershed, which have been polluted by the operation of a paper mill. The results suggest that North Carolina residents of the subwatersheds with impaired river, who experience economic benefits from the paper mill in addition to harmful effects, do perceive the pollution as a negative externality, whereas they may have a willingness to bear a similar type of negative externality associated with impaired streams. In contrast, the effects of both degraded river and streams on property values is perceived as a negative externality by residents in the Tennessee side, who experience only harmful effects from the pollution. North Carolina residents may hold greater willingness to bear the harmful effects of pollution as a given condition in their decision-making process because they receive economic benefits from the paper mill, while this internalization of the negative externality is weaker for residents in the Tennessee side.negative Externalities, water quality, spatial hedonic model, Environmental Economics and Policy,

    AffinityNet: semi-supervised few-shot learning for disease type prediction

    Full text link
    While deep learning has achieved great success in computer vision and many other fields, currently it does not work very well on patient genomic data with the "big p, small N" problem (i.e., a relatively small number of samples with high-dimensional features). In order to make deep learning work with a small amount of training data, we have to design new models that facilitate few-shot learning. Here we present the Affinity Network Model (AffinityNet), a data efficient deep learning model that can learn from a limited number of training examples and generalize well. The backbone of the AffinityNet model consists of stacked k-Nearest-Neighbor (kNN) attention pooling layers. The kNN attention pooling layer is a generalization of the Graph Attention Model (GAM), and can be applied to not only graphs but also any set of objects regardless of whether a graph is given or not. As a new deep learning module, kNN attention pooling layers can be plugged into any neural network model just like convolutional layers. As a simple special case of kNN attention pooling layer, feature attention layer can directly select important features that are useful for classification tasks. Experiments on both synthetic data and cancer genomic data from TCGA projects show that our AffinityNet model has better generalization power than conventional neural network models with little training data. The code is freely available at https://github.com/BeautyOfWeb/AffinityNet .Comment: 14 pages, 6 figure

    Seven ways to improve example-based single image super resolution

    Full text link
    In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanced prediction by consistency check, and 7) context reasoning. We validate our seven techniques on standard SR benchmarks (i.e. Set5, Set14, B100) and methods (i.e. A+, SRCNN, ANR, Zeyde, Yang) and achieve substantial improvements.The techniques are widely applicable and require no changes or only minor adjustments of the SR methods. Moreover, our Improved A+ (IA) method sets new state-of-the-art results outperforming A+ by up to 0.9dB on average PSNR whilst maintaining a low time complexity.Comment: 9 page

    Steganographer Identification

    Full text link
    Conventional steganalysis detects the presence of steganography within single objects. In the real-world, we may face a complex scenario that one or some of multiple users called actors are guilty of using steganography, which is typically defined as the Steganographer Identification Problem (SIP). One might use the conventional steganalysis algorithms to separate stego objects from cover objects and then identify the guilty actors. However, the guilty actors may be lost due to a number of false alarms. To deal with the SIP, most of the state-of-the-arts use unsupervised learning based approaches. In their solutions, each actor holds multiple digital objects, from which a set of feature vectors can be extracted. The well-defined distances between these feature sets are determined to measure the similarity between the corresponding actors. By applying clustering or outlier detection, the most suspicious actor(s) will be judged as the steganographer(s). Though the SIP needs further study, the existing works have good ability to identify the steganographer(s) when non-adaptive steganographic embedding was applied. In this chapter, we will present foundational concepts and review advanced methodologies in SIP. This chapter is self-contained and intended as a tutorial introducing the SIP in the context of media steganography.Comment: A tutorial with 30 page
    • …
    corecore