6,064 research outputs found

    Learning Dynamical Demand Response Model in Real-Time Pricing Program

    Full text link
    Price responsiveness is a major feature of end use customers (EUCs) that participate in demand response (DR) programs, and has been conventionally modeled with static demand functions, which take the electricity price as the input and the aggregate energy consumption as the output. This, however, neglects the inherent temporal correlation of the EUC behaviors, and may result in large errors when predicting the actual responses of EUCs in real-time pricing (RTP) programs. In this paper, we propose a dynamical DR model so as to capture the temporal behavior of the EUCs. The states in the proposed dynamical DR model can be explicitly chosen, in which case the model can be represented by a linear function or a multi-layer feedforward neural network, or implicitly chosen, in which case the model can be represented by a recurrent neural network or a long short-term memory unit network. In both cases, the dynamical DR model can be learned from historical price and energy consumption data. Numerical simulation illustrated how the states are chosen and also showed the proposed dynamical DR model significantly outperforms the static ones.Comment: Accepted to IEEE ISGT NA 201

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen

    Internet of things (IoT) based adaptive energy management system for smart homes

    Get PDF
    PhD ThesisInternet of things enhances the flexibility of measurements under different environments, the development of advanced wireless sensors and communication networks on the smart grid infrastructure would be essential for energy efficiency systems. It makes deployment of a smart home concept easy and realistic. The smart home concept allows residents to control, monitor and manage their energy consumption with minimal wastage. The scheduling of energy usage enables forecasting techniques to be essential for smart homes. This thesis presents a self-learning home management system based on machine learning techniques and energy management system for smart homes. Home energy management system, demand side management system, supply side management system, and power notification system are the major components of the proposed self-learning home management system. The proposed system has various functions including price forecasting, price clustering, power forecasting alert, power consumption alert, and smart energy theft system to enhance the capabilities of the self-learning home management system. These functions were developed and implemented through the use of computational and machine learning technologies. In order to validate the proposed system, real-time power consumption data were collected from a Singapore smart home and a realistic experimental case study was carried out. The case study had proven that the developed system performing well and increased energy awareness to the residents. This proposed system also showcases its customizable ability according to different types of environments as compared to traditional smart home models. Forecasting systems for the electricity market generation have become one of the foremost research topics in the power industry. It is essential to have a forecasting system that can accurately predict electricity generation for planning and operation in the electricity market. This thesis also proposed a novel system called multi prediction system and it is developed based on long short term memory and gated recurrent unit models. This proposed system is able to predict the electricity market generation with high accuracy. Multi Prediction System is based on four stages which include a data collecting and pre-processing module, a multi-input feature model, multi forecast model and mean absolute percentage error. The data collecting and pre-processing module preprocess the real-time data using a window method. Multi-input feature model uses single input feeding method, double input feeding method and multiple feeding method for features input to the multi forecast model. Multi forecast model integrates long short term memory and gated recurrent unit variations such as regression model, regression with time steps model, memory between batches model and stacked model to predict the future generation of electricity. The mean absolute percentage error calculation was utilized to evaluate the accuracy of the prediction. The proposed system achieved high accuracy results to demonstrate its performance
    • …
    corecore