1,728 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Learning recommender systems from biased user interactions

    Get PDF
    Recommender systems have been widely deployed to help users quickly find what they need from a collection of items. Predominant recommendation methods rely on supervised learning models to predict user ratings on items or the probabilities of users interacting with items. In addition, reinforcement learning models are crucial in improving long-term user engagement within recommender systems. In practice, both of these recommendation methods are commonly trained on logged user interactions and, therefore, subject to bias present in logged user interactions. This thesis concerns complex forms of bias in real-world user behaviors and aims to mitigate the effect of bias on reinforcement learning-based recommendation methods. The first part of the thesis consists of two research chapters, each dedicated to tackling a specific form of bias: dynamic selection bias and multifactorial bias. To mitigate the effect of dynamic selection bias and multifactorial bias, we propose a bias propensity estimation method for each. By incorporating the results from the bias propensity estimation methods, the widely used inverse propensity scoring-based debiasing method can be extended to correct for the corresponding bias. The second part of the thesis consists of two chapters that concern the effect of bias on reinforcement learning-based recommendation methods. Its first chapter focuses on mitigating the effect of bias on simulators, which enables the learning and evaluation of reinforcement learning-based recommendation methods. Its second chapter further explores different state encoders for reinforcement learning-based recommendation methods when learning and evaluating with the proposed debiased simulator

    Advances and Challenges of Multi-task Learning Method in Recommender System: A Survey

    Full text link
    Multi-task learning has been widely applied in computational vision, natural language processing and other fields, which has achieved well performance. In recent years, a lot of work about multi-task learning recommender system has been yielded, but there is no previous literature to summarize these works. To bridge this gap, we provide a systematic literature survey about multi-task recommender systems, aiming to help researchers and practitioners quickly understand the current progress in this direction. In this survey, we first introduce the background and the motivation of the multi-task learning-based recommender systems. Then we provide a taxonomy of multi-task learning-based recommendation methods according to the different stages of multi-task learning techniques, which including task relationship discovery, model architecture and optimization strategy. Finally, we raise discussions on the application and promising future directions in this area

    Improving Prediction Performance and Model Interpretability through Attention Mechanisms from Basic and Applied Research Perspectives

    Get PDF
    With the dramatic advances in deep learning technology, machine learning research is focusing on improving the interpretability of model predictions as well as prediction performance in both basic and applied research. While deep learning models have much higher prediction performance than conventional machine learning models, the specific prediction process is still difficult to interpret and/or explain. This is known as the black-boxing of machine learning models and is recognized as a particularly important problem in a wide range of research fields, including manufacturing, commerce, robotics, and other industries where the use of such technology has become commonplace, as well as the medical field, where mistakes are not tolerated.Focusing on natural language processing tasks, we consider interpretability as the presentation of the contribution of a prediction to an input word in a recurrent neural network. In interpreting predictions from deep learning models, much work has been done mainly on visualization of importance mainly based on attention weights and gradients for the inference results. However, it has become clear in recent years that there are not negligible problems with these mechanisms of attention mechanisms and gradients-based techniques. The first is that the attention weight learns which parts to focus on, but depending on the task or problem setting, the relationship with the importance of the gradient may be strong or weak, and these may not always be strongly related. Furthermore, it is often unclear how to integrate both interpretations. From another perspective, there are several unclear aspects regarding the appropriate application of the effects of attention mechanisms to real-world problems with large datasets, as well as the properties and characteristics of the applied effects. This dissertation discusses both basic and applied research on how attention mechanisms improve the performance and interpretability of machine learning models.From the basic research perspective, we proposed a new learning method that focuses on the vulnerability of the attention mechanism to perturbations, which contributes significantly to prediction performance and interpretability. Deep learning models are known to respond to small perturbations that humans cannot perceive and may exhibit unintended behaviors and predictions. Attention mechanisms used to interpret predictions are no exception. This is a very serious problem because current deep learning models rely heavily on this mechanism. We focused on training techniques using adversarial perturbations, i.e., perturbations that dares to deceive the attention mechanism. We demonstrated that such an adversarial training technique makes the perturbation-sensitive attention mechanism robust and enables the presentation of highly interpretable predictive evidence. By further extending the proposed technique to semi-supervised learning, a general-purpose learning model with a more robust and interpretable attention mechanism was achieved.From the applied research perspective, we investigated the effectiveness of the deep learning models with attention mechanisms validated in the basic research, are in real-world applications. Since deep learning models with attention mechanisms have mainly been evaluated using basic tasks in natural language processing and computer vision, their performance when used as core components of applications and services has often been unclear. We confirm the effectiveness of the proposed framework with an attention mechanism by focusing on the real world of applications, particularly in the field of computational advertising, where the amount of data is large, and the interpretation of predictions is necessary. The proposed frameworks are new attempts to support operations by predicting the nature of digital advertisements with high serving effectiveness, and their effectiveness has been confirmed using large-scale ad-serving data.In light of the above, the research summarized in this dissertation focuses on the attention mechanism, which has been the focus of much attention in recent years, and discusses its potential for both basic research in terms of improving prediction performance and interpretability, and applied research in terms of evaluating it for real-world applications using large data sets beyond the laboratory environment. The dissertation also concludes with a summary of the implications of these findings for subsequent research and future prospects in the field.博士(工学)法政大学 (Hosei University

    Peer Priming? A Large-Scale Field Experiment Studying the Impact of Popular Rankings on Demand in Mobile Retail

    Get PDF
    Consumers on mobile retail apps face significant search costs due to the small screen size of devices. One of the search aid features to improve the search convenience is to show consumers a small set of frequently used searches conducted by peer consumers on the platform as a prime cue. We refer to this feature as the popular ranking search aid (PRSA). Collaborating with Meituan, a leading services mobile app in China, we implement a large-scale field experiment to explore how PRSA affects consumer search activities and purchases. Our analyses generate three key findings. First, PRSA leads to an increase of 18.6% in page views and a 6.4% increase in purchases. Second, the change in shopping behavior emerges through a change in search behavior with more non-directed searches and fewer directed searches. Third, our mediation analysis supports that search behavior mediates the business outcomes. We offer theoretical and managerial implications

    Leveraging Large Language Models in Conversational Recommender Systems

    Full text link
    A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue. Recently, Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding, unlocking the potential of this paradigm. However, effectively leveraging LLMs within a CRS introduces new technical challenges, including properly understanding and controlling a complex conversation and retrieving from external sources of information. These issues are exacerbated by a large, evolving item corpus and a lack of conversational data for training. In this paper, we provide a roadmap for building an end-to-end large-scale CRS using LLMs. In particular, we propose new implementations for user preference understanding, flexible dialogue management and explainable recommendations as part of an integrated architecture powered by LLMs. For improved personalization, we describe how an LLM can consume interpretable natural language user profiles and use them to modulate session-level context. To overcome conversational data limitations in the absence of an existing production CRS, we propose techniques for building a controllable LLM-based user simulator to generate synthetic conversations. As a proof of concept we introduce RecLLM, a large-scale CRS for YouTube videos built on LaMDA, and demonstrate its fluency and diverse functionality through some illustrative example conversations

    PERSONALIZED POINT OF INTEREST RECOMMENDATIONS WITH PRIVACY-PRESERVING TECHNIQUES

    Get PDF
    Location-based services (LBS) have become increasingly popular, with millions of people using mobile devices to access information about nearby points of interest (POIs). Personalized POI recommender systems have been developed to assist users in discovering and navigating these POIs. However, these systems typically require large amounts of user data, including location history and preferences, to provide personalized recommendations. The collection and use of such data can pose significant privacy concerns. This dissertation proposes a privacy-preserving approach to POI recommendations that address these privacy concerns. The proposed approach uses clustering, tabular generative adversarial networks, and differential privacy to generate synthetic user data, allowing for personalized recommendations without revealing individual user data. Specifically, the approach clusters users based on their fuzzy locations, generates synthetic user data using a tabular generative adversarial network and perturbs user data with differential privacy before it is used for recommendation. The proposed approaches achieve well-balanced trade-offs between accuracy and privacy preservation and can be applied to different recommender systems. The approach is evaluated through extensive experiments on real-world POI datasets, demonstrating that it is effective in providing personalized recommendations while preserving user privacy. The results show that the proposed approach achieves comparable accuracy to traditional POI recommender systems that do not consider privacy while providing significant privacy guarantees for users. The research\u27s contribution is twofold: it compares different methods for synthesizing user data specifically for POI recommender systems and offers a general privacy-preserving framework for different recommender systems. The proposed approach provides a novel solution to the privacy concerns of POI recommender systems, contributes to the development of more trustworthy and user-friendly LBS applications, and can enhance the trust of users in these systems
    corecore